Product SiteDocumentation Site

15.4. Kickstart Options

The following options can be placed in a kickstart file. If you prefer to use a graphical interface for creating your kickstart file, use the Kickstart Configurator application. Refer to Chapter 16, Kickstart Configurator for details.

Note

If the option is followed by an equals mark (=), a value must be specified after it. In the example commands, options in brackets ([]) are optional arguments for the command.
auth or authconfig (required)
Sets up the authentication options for the system. It is similar to the authconfig command, which can be run after the install. By default, passwords are normally encrypted and are not shadowed.
  • --enablenis — Turns on NIS support. By default, --enablenis uses whatever domain it finds on the network. A domain should almost always be set by hand with the --nisdomain= option.
  • --nisdomain= — NIS domain name to use for NIS services.
  • --nisserver= — Server to use for NIS services (broadcasts by default).
  • --useshadow or --enableshadow — Use shadow passwords.
  • --enableldap — Turns on LDAP support in /etc/nsswitch.conf, allowing your system to retrieve information about users (for example, their UIDs, home directories, and shells) from an LDAP directory. To use this option, you must install the nss-pam-ldapd package. You must also specify a server and a base DN (distinguished name) with --ldapserver= and --ldapbasedn=.
  • --enableldapauth — Use LDAP as an authentication method. This enables the pam_ldap module for authentication and changing passwords, using an LDAP directory. To use this option, you must have the nss-pam-ldapd package installed. You must also specify a server and a base DN with --ldapserver= and --ldapbasedn=. If your environment does not use TLS (Transport Layer Security), use the --disableldaptls switch to ensure that the resulting configuration file works.
  • --ldapserver= — If you specified either --enableldap or --enableldapauth, use this option to specify the name of the LDAP server to use. This option is set in the /etc/ldap.conf file.
  • --ldapbasedn= — If you specified either --enableldap or --enableldapauth, use this option to specify the DN in your LDAP directory tree under which user information is stored. This option is set in the /etc/ldap.conf file.
  • --enableldaptls — Use TLS (Transport Layer Security) lookups. This option allows LDAP to send encrypted usernames and passwords to an LDAP server before authentication.
  • --disableldaptls — Do not use TLS (Transport Layer Security) lookups in an environment that uses LDAP for authentication.
  • --enablekrb5 — Use Kerberos 5 for authenticating users. Kerberos itself does not know about home directories, UIDs, or shells. If you enable Kerberos, you must make users' accounts known to this workstation by enabling LDAP, NIS, or Hesiod or by using the /usr/sbin/useradd command. If you use this option, you must have the pam_krb5 package installed.
  • --krb5realm= — The Kerberos 5 realm to which your workstation belongs.
  • --krb5kdc= — The KDC (or KDCs) that serve requests for the realm. If you have multiple KDCs in your realm, separate their names with commas (,).
  • --krb5adminserver= — The KDC in your realm that is also running kadmind. This server handles password changing and other administrative requests. This server must be run on the master KDC if you have more than one KDC.
  • --enablehesiod — Enable Hesiod support for looking up user home directories, UIDs, and shells. More information on setting up and using Hesiod on your network is in /usr/share/doc/glibc/README.hesiod, which is included in the glibc package. Hesiod is an extension of DNS that uses DNS records to store information about users, groups, and various other items.
  • --hesiodlhs and --hesiodrhs — The Hesiod LHS (left-hand side) and RHS (right-hand side) values, set in /etc/hesiod.conf. The Hesiod library uses these values to search DNS for a name, similar to the way that LDAP uses a base DN.
    To look up user information for the username jim, the Hesiod library looks up jim.passwd<LHS><RHS>, which should resolve to a TXT record that contains a string identical to an entry for that user in the passwd file: jim:*:501:501:Jungle Jim:/home/jim:/bin/bash. To look up groups, the Hesiod library looks up jim.group<LHS><RHS> instead.
    To look up users and groups by number, make 501.uid a CNAME for jim.passwd, and 501.gid a CNAME for jim.group. Note that the library does not place a period (.) in front of the LHS and RHS values when performing a search. Therefore, if the LHS and RHS values need to have a period placed in front of them, you must include the period in the values you set for --hesiodlhs and --hesiodrhs.
  • --enablesmbauth — Enables authentication of users against an SMB server (typically a Samba or Windows server). SMB authentication support does not know about home directories, UIDs, or shells. If you enable SMB, you must make users' accounts known to the workstation by enabling LDAP, NIS, or Hesiod or by using the /usr/sbin/useradd command.
  • --smbservers= — The name of the servers to use for SMB authentication. To specify more than one server, separate the names with commas (,).
  • --smbworkgroup= — The name of the workgroup for the SMB servers.
  • --enablecache — Enables the nscd service. The nscd service caches information about users, groups, and various other types of information. Caching is especially helpful if you choose to distribute information about users and groups over your network using NIS, LDAP, or Hesiod.
  • --passalgo= — specify sha256 to set up the SHA-256 hashing algorithm or sha512 to set up the SHA-512 hashing algorithm.
autopart (optional)
Automatically creates partitions — a root (/) partition (1 GB or bigger), a /swap partition, and an appropriate /boot partition for the architecture. On large enough drives, this also creates a /home partition.

Note

Note that the autopart option cannot be used together with the part/partition, raid, logvol, or volgroup options in the same kickstart file.
  • --encrypted — Should all devices with support be encrypted by default? This is equivalent to checking the Encrypt checkbox on the initial partitioning screen.
  • --cipher= — Specifies which type of encryption will be used if the anaconda default aes-xts-plain64 is not satisfactory. You must use this option together with the --encrypted option; by itself it has no effect. Available types of encryption are listed in the Red Hat Enterprise Linux Security Guide, but Red Hat strongly recommends using either aes-xts-plain64 or aes-cbc-essiv:sha256.
  • --passphrase= — Provide a default system-wide passphrase for all encrypted devices.
  • --escrowcert=URL_of_X.509_certificate — Store data encryption keys of all encrypted volumes as files in /root, encrypted using the X.509 certificate from the URL specified with URL_of_X.509_certificate. The keys are stored as a separate file for each encrypted volume. This option is only meaningful if --encrypted is specified.
  • --backuppassphrase= — Add a randomly-generated passphrase to each encrypted volume. Store these passphrases in separate files in /root, encrypted using the X.509 certificate specified with --escrowcert. This option is only meaningful if --escrowcert is specified.
  • --type= — Select one of the predefined automatic partitioning scheme you want to use. Accepts the following values:
    • lvm: The LVM partitioning scheme.
    • btrfs: The BTRFS partitioning scheme.
    • thinp: The LVM Thin Provisioning partitioning scheme.
    • plain: Regular partitions with no LVM or BTRFS.
    For a description of the available partition schemes, see Section 9.14.1.1, “File System Types”.
  • --nolvm — Do not use LVM or BTRFS for automatic partitioning. This option is equal to --type=plain.
autostep (optional)
Similar to interactive except it goes to the next screen for you. It is used mostly for debugging.
  • --autoscreenshot — Take a screenshot at every step during installation and copy the images over to /root/anaconda-screenshots after installation is complete. This is most useful for documentation.
bootloader (required)
Specifies how the boot loader should be installed. This option is required for both installations and upgrades.

Important

If you select text mode for a kickstart installation, make sure that you specify choices for the partitioning, bootloader, and package selection options. These steps are automated in text mode, and anaconda cannot prompt you for missing information. If you do not provide choices for these options, anaconda will stop the installation process.
  • --append= — Specifies kernel parameters. To specify multiple parameters, separate them with spaces. For example:
    bootloader --location=mbr --append="hdd=ide-scsi ide=nodma"
  • --driveorder — Specify which drive is first in the BIOS boot order. For example:
    bootloader --driveorder=sda,hda
  • --boot-drive= — Specifies which drive the bootloader is installed to.
  • --location= — Specifies where the boot record is written. Valid values are the following: mbr (the default), partition (installs the boot loader on the first sector of the partition containing the kernel), or none (do not install the boot loader).
  • --leavebootorder= — Boot the drives in their existing order, to override the default of booting into the newly installed drive on Power Systems servers and EFI systems. This is useful for systems that, for example, should network boot first before falling back to a local boot.
  • --md5pass= — If using GRUB, similar to --password= except the password should already be encrypted.
  • --password= — If using GRUB, sets the GRUB boot loader password to the one specified with this option. This should be used to restrict access to the GRUB shell, where arbitrary kernel options can be passed.
  • --timeout= — Specify the number of seconds before the bootloader times out and boots the default option. Specifying 0 will tell GRUB not to display these menus.
  • --upgrade — Upgrade the existing boot loader configuration, preserving the old entries. This option is only available for upgrades.
  • --extlinux — install and use the extlinux bootloader.
btrfs (optional)
Create a BTRFS volume or subvolume. For a volume, the syntax is:
btrfs <mntpoint> --data=<level> --metadata=<level> --label=<label> <partitions>
<partitions> denotes that multiple partitions can be listed and should list the BTRFS identifiers to add to the BTRFS volume.
For a subvolume, the syntax is:
btrfs <mntpoint> --subvol --name=<path> <parent>
<parent> should be the identifier of the subvolume's parent volume.
None of the following options apply to subvolumes.
  • --data= — RAID level to use for filesystem data (such as 0, 1, or 10).
  • --metadata= — RAID level to use for filesystem/volume metadata (such as 0, 1, or 10).
  • --label= — Specify a label for the BTRFS filesystem.
  • --noformat — Use an existing BTRFS volume and do not reformat the filesystem.
clearpart (optional)
Removes partitions from the system, prior to creation of new partitions. By default, no partitions are removed.

Note

If the clearpart command is used, then the --onpart command cannot be used on a logical partition.
  • --all — Erases all partitions from the system.
  • --drives= — Specifies which drives to clear partitions from. For example, the following clears all the partitions on the first two drives on the primary IDE controller:
    clearpart --drives=hda,hdb --all
    To clear a multipath device that does not use logical volume management (LVM), use the format disk/by-id/dm-uuid-mpath-WWID, where WWID is the world-wide identifier for the device. For example, to clear a disk with WWID 2416CD96995134CA5D787F00A5AA11017, use:
    clearpart --drives=disk/by-id/dm-uuid-mpath-2416CD96995134CA5D787F00A5AA11017
    Multipath devices that use LVM are not assembled until after anaconda has parsed the kickstart file. Therefore, you cannot specify these devices in the format dm-uuid-mpath. Instead, to clear a multipath device that uses LVM, use the format disk/by-id/scsi-WWID, where WWID is the world-wide identifier for the device. For example, to clear a disk with WWID 58095BEC5510947BE8C0360F604351918, use:
    clearpart --drives=disk/by-id/scsi-58095BEC5510947BE8C0360F604351918

    Warning — Never specify multipath devices by device names like mpatha

    Device names like mpatha are not specific to a particular disk. The disk named /dev/mpatha during installation might not be the one that you expect it to be. Therefore, the clearpart command could target the wrong disk.
  • --list= — Specifies individual partitions to be removed. For example, the following removes the first partition on the hda drive and the second partition on the hdb drive:
    clearpart --list=hda1,hdb2
  • --initlabel — Initializes the disk label to the default for your architecture (for example msdos for x86). It is useful so that the installation program does not ask if it should initialize the disk label if installing to a brand new hard drive.
  • --linux — Erases all Linux partitions.
  • --none (default) — Do not remove any partitions.
cmdline (optional)
Perform the installation in a completely non-interactive command line mode. Any prompts for interaction halts the install.
device (optional)
On most PCI systems, the installation program autoprobes for Ethernet and SCSI cards properly. On older systems and some PCI systems, however, kickstart needs a hint to find the proper devices. The device command, which tells the installation program to install extra modules, is in this format:
device <moduleName> --opts=<options>
  • <moduleName> — Replace with the name of the kernel module which should be installed.
  • --opts= — Mount options to use for mounting the NFS export. Any options that can be specified in /etc/fstab for an NFS mount are allowed. The options are listed in the nfs(5) man page. Multiple options are separated with a comma.
driverdisk (optional)
Driver disks can be used during kickstart installations. You must copy the driver disks's contents to the root directory of a partition on the system's hard drive. Then you must use the driverdisk command to tell the installation program where to look for the driver disk.
driverdisk <partition> --source=<url> --biospart=<biospart> [--type=<fstype>]
Alternatively, a network location can be specified for the driver disk:
driverdisk --source=ftp://path/to/dd.img
driverdisk --source=http://path/to/dd.img
driverdisk --source=nfs:host:/path/to/img
  • <partition> — Partition containing the driver disk.
  • <url> — URL for the driver disk. NFS locations can be given in the form nfs:host:/path/to/img.
  • <biospart> — BIOS partition containing the driver disk (for example, 82p2).
  • --type= — File system type (for example, vfat or ext2).
firewall (optional)
This option corresponds to the Firewall Configuration screen in the installation program:
firewall --enabled|--disabled [--trust=] <device> [--port=]
  • --enabled or --enable — Reject incoming connections that are not in response to outbound requests, such as DNS replies or DHCP requests. If access to services running on this machine is needed, you can choose to allow specific services through the firewall.
  • --disabled or --disable — Do not configure any iptables rules.
  • --trust= — Listing a device here, such as eth0, allows all traffic coming from that device to go through the firewall. To list more than one device, use --trust eth0 --trust eth1. Do NOT use a comma-separated format such as --trust eth0, eth1.
  • <incoming> — Replace with one or more of the following to allow the specified services through the firewall.
    • --ssh
    • --smtp
    • --http
    • --ftp
  • --port= — You can specify that ports be allowed through the firewall using the port:protocol format. For example, to allow IMAP access through your firewall, specify imap:tcp. Numeric ports can also be specified explicitly; for example, to allow UDP packets on port 1234 through, specify 1234:udp. To specify multiple ports, separate them by commas.
graphical (optional)
Perform the kickstart installation in graphical mode. This is the default.
halt (optional)
Halt the system after the installation has successfully completed. This is similar to a manual installation, where anaconda displays a message and waits for the user to press a key before rebooting. During a kickstart installation, if no completion method is specified, this option is used as the default.
The halt option is equivalent to the shutdown -h command.
For other completion methods, refer to the poweroff, reboot, and shutdown kickstart options.
ignoredisk (optional)
Causes the installer to ignore the specified disks. This is useful if you use autopartition and want to be sure that some disks are ignored. For example, without ignoredisk, attempting to deploy on a SAN-cluster the kickstart would fail, as the installer detects passive paths to the SAN that return no partition table.
The syntax is:
ignoredisk --drives=drive1,drive2,...
where driveN is one of sda, sdb,..., hda,... etc.
To ignore a multipath device that does not use logical volume management (LVM), use the format disk/by-id/dm-uuid-mpath-WWID, where WWID is the world-wide identifier for the device. For example, to ignore a disk with WWID 2416CD96995134CA5D787F00A5AA11017, use:
ignoredisk --drives=disk/by-id/dm-uuid-mpath-2416CD96995134CA5D787F00A5AA11017
Multipath devices that use LVM are not assembled until after anaconda has parsed the kickstart file. Therefore, you cannot specify these devices in the format dm-uuid-mpath. Instead, to ignore a multipath device that uses LVM, use the format disk/by-id/scsi-WWID, where WWID is the world-wide identifier for the device. For example, to ignore a disk with WWID 58095BEC5510947BE8C0360F604351918, use:
ignoredisk --drives=disk/by-id/scsi-58095BEC5510947BE8C0360F604351918

Warning — Never specify multipath devices by device names like mpatha

Device names like mpatha are not specific to a particular disk. The disk named /dev/mpatha during installation might not be the one that you expect it to be. Therefore, the ignoredisk command could target the wrong disk.
  • --only-use — specifies a list of disks for the installer to use. All other disks are ignored. For example, to use disk sda during installation and ignore all other disks:
    ignoredisk --only-use=sda
    To include a multipath device that does not use LVM:
    ignoredisk --only-use=disk/by-id/dm-uuid-mpath-2416CD96995134CA5D787F00A5AA11017
    To include a multipath device that uses LVM:
    ignoredisk --only-use=disk/by-id/scsi-58095BEC5510947BE8C0360F604351918
install (optional)
Tells the system to install a fresh system rather than upgrade an existing system. This is the default mode. For installation, you must specify the type of installation from cdrom, harddrive, nfs, or url (for FTP or HTTP installations). The install command and the installation method command must be on separate lines.
  • cdrom — Install from the first optical drive on the system.
  • harddrive — Install from a Fedora installation tree on a local drive, which must be either vfat or ext2.
    • --biospart=
      BIOS partition to install from (such as 82).
    • --partition=
      Partition to install from (such as sdb2).
    • --dir=
      Directory containing the variant directory of the installation tree.
    For example:
    harddrive --partition=hdb2 --dir=/tmp/install-tree
  • liveimg — Install a disk image instead of packages. The image can be the squashfs.img file from a live image or a bare image from any existing filesystem mountable by the installation media, such as ext4. The image will be downloaded to the target drive after it has been partitioned.
    • --url=<url> — specify where the live image should be downloaded from. HTTP, HTTPS, FTP, and local file access are all supported.
    • --proxy=[protocol://][username[:password]@]host[:port] — specify a HTTP, HTTPS, or FTP proxy, if desired.
    • --checksum= — pass the optional sha256 image checksum before files are copied to the target system.
    • --noverifyssl — skip checking the SSL certificate if downloading via HTTPS.
    For example:
    liveimg --url=https://<server>/<dir> [--checksum=sha256] [--noverifyssl]

    Important

    The disk image must have the necessary utilities that anaconda needs to complete the installation, so livemedia-creator is recommended for creating the disk image.
  • nfs — Install from the NFS server specified.
    • --server=
      Server from which to install (hostname or IP).
    • --dir=
      Directory containing the variant directory of the installation tree.
    • --opts=
      Mount options to use for mounting the NFS export. (optional)
    For example:
    nfs --server=nfsserver.example.com --dir=/tmp/install-tree
  • url — Install from an installation tree on a remote server via FTP or HTTP.
    For example:
    url --url http://<server>/<dir>
    or:
    url --url ftp://<username>:<password>@<server>/<dir>
iscsi (optional)
iscsi --ipaddr= [options].
Specifies additional iSCSI storage to be attached during installation. If you use the iscsi parameter, you must also assign a name to the iSCSI node, using the iscsiname parameter earlier in the kickstart file.
We recommend that wherever possible you configure iSCSI storage in the system BIOS or firmware (iBFT for Intel systems) rather than use the iscsi parameter. Anaconda automatically detects and uses disks configured in BIOS or firmware and no special configuration is necessary in the kickstart file.
If you must use the iscsi parameter, ensure that networking is activated at the beginning of the installation, and that the iscsi parameter appears in the kickstart file before you refer to iSCSI disks with parameters such as clearpart or ignoredisk.
  • --port= (mandatory) — the port number (typically, --port=3260)
  • --user= — the username required to authenticate with the target
  • --password= — the password that corresponds with the username specified for the target
  • --reverse-user= — the username required to authenticate with the initiator from a target that uses reverse CHAP authentication
  • --reverse-password= — the password that corresponds with the username specified for the initiator
iscsiname (optional)
Assigns a name to an iSCSI node specified by the iscsi parameter. If you use the iscsi parameter in your kickstart file, you must specify iscsiname earlier in the kickstart file.
keyboard (required)
Set the available keyboard layouts for the system and how to switch between them with the following syntax:
keyboard --vckeymap=<keymap>|--xlayouts=<layout1>,...,<layoutN>|<layout> [--switch=<option1>,...<optionN>]
  • --vckeymap=<keymap> — specify a VConsole keymap to serve as the keyboard layout. Available keymap names are listed in /usr/lib/kbd/keymaps/architecture with the .map.gz extension removed.
  • --xlayouts= — specify a list of X layouts as a comma-separated list with no spaces. Layouts come in one of the following formats: layout and 'layout (variant)'. For example:
    keyboard --xlayouts=cz,'cz (qwerty)'
    Refer to https://fedoraproject.org/wiki/Anaconda/Kickstart for the available layouts.
  • <layout> — an earlier format for specifying the keyboard layout. This format is still supported and accepts both VConsole keymap names and X layouts.
  • --switch= — specify keyboard shortcuts for switching between layouts. The list should be comma-separated with no spaces. Refer to https://fedoraproject.org/wiki/Anaconda/Kickstart for the available options.
lang (required)
Sets the language to use during installation and the default language to use on the installed system. For example, to set the language to English, the kickstart file should contain the following line:
lang en_US
The file /usr/share/system-config-language/locale-list provides a list of the valid language codes in the first column of each line and is part of the system-config-language package.
Certain languages (for example, Chinese, Japanese, Korean, and Indic languages) are not supported during text-mode installation. If you specify one of these languages with the lang command, the installation process continues in English, but the installed system uses your selection as its default language.
  • --addsupport — Set additional languages to be supported on the installed system.
langsupport (deprecated)
The langsupport keyword is deprecated and its use will cause an error message to be printed to the screen and installation to halt. Instead of using the langsupport keyword, you should now list the support package groups for all languages you want supported in the %packages section of your kickstart file. For instance, adding support for French means you should add the following to %packages:
@french-support
logvol (optional)
Create a logical volume for Logical Volume Management (LVM) with the syntax:
logvol <mntpoint> --vgname=<name> --size=<size> --name=<name> <options>
The options are as follows:
  • --noformat — Use an existing logical volume and do not format it.
  • --useexisting — Use an existing logical volume and reformat it.
  • --fstype= — Sets the file system type for the logical volume. Valid values are xfs, ext2, ext3, ext4, swap, vfat, and hfs.
  • --fsoptions= — Specifies a free form string of options to be used when mounting the filesystem. This string will be copied into the /etc/fstab file of the installed system and should be enclosed in quotes.
  • --grow= — Tells the logical volume to grow to fill available space (if any), or up to the maximum size setting.
  • --maxsize= — The maximum size in megabytes when the logical volume is set to grow. Specify an integer value here such as 500 (do not include the unit).
  • --recommended= — Determine the size of the logical volume automatically.
  • --percent= — Specify the amount by which to grow the logical volume, as a percentage of the free space in the volume group after any statically-sized logical volumes are taken into account. This option must be used in conjunction with the --size and --grow options for logvol.
  • --encrypted — Specifies that this logical volume should be encrypted, using the passphrase provided in the --passphrase option. If you do not specify a passphrase, anaconda uses the default, system-wide passphrase set with the autopart --passphrase command, or stops the installation and prompts you to provide a passphrase if no default is set.
  • --passphrase= — Specifies the passphrase to use when encrypting this logical volume. You must use this option together with the --encrypted option; by itself it has no effect.
  • --escrowcert=URL_of_X.509_certificate — Store data encryption keys of all encrypted volumes as files in /root, encrypted using the X.509 certificate from the URL specified with URL_of_X.509_certificate. The keys are stored as a separate file for each encrypted volume. This option is only meaningful if --encrypted is specified.
  • --backuppassphrase= — Add a randomly-generated passphrase to each encrypted volume. Store these passphrases in separate files in /root, encrypted using the X.509 certificate specified with --escrowcert. This option is only meaningful if --escrowcert is specified.
  • --thinpool= — Create a thin pool logical volume. (Use a mountpoint of "none")
  • --metadatasize=size — Specify the metadata area size (in MiB) for a new thin pool device.
  • --chunksize=size — Specify the chunk size (in KiB) for a new thin pool device.
  • --thin — Create a thin logical volume. (Requires use of --poolname)
  • --poolname=name — Specify the name of the thin pool in which to create a thin logical volume. (Requires --thin)
  • --resize — Resize an existing partition. This option must be used in conjunction with the --size= to specify the new size and --useexisting.
Create the partition first, create the logical volume group, and then create the logical volume. For example:
part pv.01 --size 3000 
volgroup myvg pv.01
logvol / --vgname=myvg --size=2000 --name=rootvol
Create the partition first, create the logical volume group, and then create the logical volume to occupy 90% of the remaining space in the volume group. For example:
part pv.01 --size 1 --grow
volgroup myvg pv.01
logvol / --vgname=myvg --size=1 --name=rootvol --grow --percent=90
logging (optional)
This command controls the error logging of anaconda during installation. It has no effect on the installed system.
  • --host= — Send logging information to the given remote host, which must be running a syslogd process configured to accept remote logging.
  • --port= — If the remote syslogd process uses a port other than the default, it may be specified with this option.
  • --level= — One of debug, info, warning, error, or critical.
    Specify the minimum level of messages that appear on tty3. All messages will still be sent to the log file regardless of this level, however.
mediacheck (optional)
If given, this will force anaconda to run mediacheck on the installation media. This command requires that installs be attended, so it is disabled by default.
monitor (optional)
If the monitor command is not given, anaconda will use X to automatically detect your monitor settings. Please try this before manually configuring your monitor.
  • --hsync= — Specifies the horizontal sync frequency of the monitor.
  • --monitor= — Use specified monitor; monitor name should be from the list of monitors in /usr/share/hwdata/MonitorsDB from the hwdata package. The list of monitors can also be found on the X Configuration screen of the Kickstart Configurator. This is ignored if --hsync or --vsync is provided. If no monitor information is provided, the installation program tries to probe for it automatically.
  • --noprobe= — Do not try to probe the monitor.
  • --vsync= — Specifies the vertical sync frequency of the monitor.
mouse (deprecated)
The mouse keyword is deprecated.
network (optional)
Configures network information for the target system and activates network devices in the installer environment. The device specified in the first network command is activated automatically if network access is required during installation, for example, during a network installation or installation over VNC. You can also explicitly require device to activate in the installer environment with the --activate option.

How to manually input network settings

If you need to manually specify network settings during an otherwise-automated kickstart installation, do not use network. Instead, enter your network settings at the boot prompt (refer to Section 15.10, “Starting a Kickstart Installation” for available boot options).
Once the network connection is established, you can only reconfigure network settings with those specified in your kickstart file.

Note

You will only be prompted for information about your network:
  • before fetching the kickstart file if you are using the asknetwork boot option
  • when the network is first accessed once the kickstart file has been fetched, if the network was not used to fetch it and you have provided no kickstart network commands
  • --activate — activate this device in the installer environment.
    If you use the --activate option on a device that has already been activated (for example, an interface you configured with boot options so that the system could retrieve the kickstart file) the device is reactivated to use the details specified in the kickstart file.
    Use the --nodefroute option to prevent the device from using the default route.
    The activate option is new in Fedora 16.
  • --biosdevname=0 — disables consistent network device naming (refer to Appendix A in the Fedora System Administrators Guide).
  • --bootproto= — One of dhcp, bootp, ibft, or static.
    The ibft option is new in Fedora 16.
    The bootproto option defaults to dhcp. bootp and dhcp are treated the same.
    The DHCP method uses a DHCP server system to obtain its networking configuration. As you might guess, the BOOTP method is similar, requiring a BOOTP server to supply the networking configuration. To direct a system to use DHCP:
    network --bootproto=dhcp
    To direct a machine to use BOOTP to obtain its networking configuration, use the following line in the kickstart file:
    network --bootproto=bootp
    To direct a machine to use the configuration specified in iBFT, use:
    network --bootproto=ibft
    The static method requires that you specify the IP address, netmask, gateway, and nameserver in the kickstart file. As the name implies, this information is static and is used during and after the installation.
    All static networking configuration information must be specified on one line; you cannot wrap lines using a backslash as you can on a command line. A line that specifies static networking in a kickstart file is therefore more complex than lines that specify DHCP, BOOTP, or iBFT. Note that the examples on this page have line breaks in them for presentation reasons; they would not work in an actual kickstart file.
    network --bootproto=static --ip=10.0.2.15 --netmask=255.255.255.0
     --gateway=10.0.2.254 --nameserver=10.0.2.1
    
    You can also configure multiple nameservers here. To do so, specify them as a comma-delimited list in the command line.
    network --bootproto=static --ip=10.0.2.15 --netmask=255.255.255.0
     --gateway=10.0.2.254 --nameserver 192.168.2.1,192.168.3.1
    
  • --device= — specifies the device to be configured (and eventually activated) with the network command. For the first network command, --device= defaults (in order of preference) to one of:
    1. the device specified by the ksdevice boot option
    2. the device activated automatically to fetch the kickstart file
    3. the device selected in the Networking Devices dialog
    The behavior of any subsequent network command is unspecified if its --device option is missing. Take care to specify a --device option for any network command beyond the first.
    You can specify a device in one of five ways:
    • the device name of the interface, for example, eth0
    • the MAC address of the interface, for example, 00:12:34:56:78:9a
    • the keyword link, which specifies the first interface with its link in the up state
    • the keyword bootif, which uses the MAC address that pxelinux set in the BOOTIF variable. Set IPAPPEND 2 in your pxelinux.cfg file to have pxelinux set the BOOTIF variable.
    • the keyword ibft, which uses the MAC address of the interface specified by iBFT
    network --bootproto=dhcp --device=eth0
  • --ip= — IP address of the device.
  • --ipv6= — IPv6 address of the device, or auto to use automatic neighbor discovery, or dhcp to use DHCPv6.
  • --gateway= — Default gateway as a single IPv4 address.
  • --ipv6gateway= — Default gateway as a single IPv6 address.
  • --nameserver= — Primary nameserver, as an IP address. Multiple nameservers must each be separated by a comma.
  • --nodefroute — Prevents the interface being set as the default route. Use this option when you activate additional devices with the --activate= option, for example, a NIC on a separate subnet for an iSCSI target.
    The nodefroute option is new in Fedora 16.
  • --nodns — Do not configure any DNS server.
  • --netmask= — Network mask of the device.
  • --hostname= — Hostname for the installed system.
  • --ethtool= — Specifies additional low-level settings for the network device which will be passed to the ethtool program.
  • --onboot= — Whether or not to enable the device at boot time.
  • --dhcpclass= — The DHCP class.
  • --mtu= — The MTU of the device.
  • --noipv4 — Disable IPv4 on this device.
  • --noipv6 — Disable IPv6 on this device.
  • --vlanid — Specifies virtual LAN ID number (802.1q tag).
part or partition (required for installs, ignored for upgrades)
Creates a partition on the system.
If more than one Fedora installation exists on the system on different partitions, the installation program prompts the user and asks which installation to upgrade.

Warning

As of Fedora 16, you need a biosboot partition in order to successfully install the bootloader on a disk that contains a GPT/GUID partition table. This includes disks initialized by the installer. This partition can be created with the kickstart option part biosboot --fstype=biosboot --size=1.
However, if the disk already has a biosboot partition, adding a "part biosboot" option is unnecessary.

Warning

All partitions created are formatted as part of the installation process unless --noformat and --onpart are used.

Important

If you select text mode for a kickstart installation, make sure that you specify choices for the partitioning, bootloader, and package selection options. These steps are automated in text mode, and anaconda cannot prompt you for missing information. If you do not provide choices for these options, anaconda will stop the installation process.
For a detailed example of part in action, refer to Section 15.4.1, “Advanced Partitioning Example”.
  • <mntpointmultipath --name= --device= --rule=> — The <mntpoint> is where the partition is mounted and must be of one of the following forms:
    • /<path>
      For example, /, /usr, /home
    • swap
      The partition is used as swap space.
      To determine the size of the swap partition automatically, use the --recommended option:
      swap --recommended
      The size assigned will be effective but not precisely calibrated for your system.
      To determine the size of the swap partition automatically but also allow extra space for your system to hibernate, use the --hibernation option:
      swap --hibernation
      The size assigned will be equivalent to the swap space assigned by --recommended plus the amount of RAM on your system.
      For the swap sizes assigned by these commands, refer to Section 9.14.5, “Recommended Partitioning Scheme”
    • raid.<id>
      The partition is used for software RAID (refer to raid).
    • pv.<id>
      The partition is used for LVM (refer to logvol).
  • --size= — The minimum partition size in megabytes. Specify an integer value here such as 500 (do not include the unit).

    Important - --size value must be high

    If the --size value is too small, the installation will fail. Set the --size value as the minimum amount of space you require. For size recommendations, refer to Section 9.14.5, “Recommended Partitioning Scheme”.
  • --grow — Tells the partition to grow to fill available space (if any), or up to the maximum size setting.

    Note

    If you use --grow= without setting --maxsize= on a swap partition, Anaconda will limit the maximum size of the swap partition. For systems that have less than 2GB of physical memory, the imposed limit is twice the amount of physical memory. For systems with more than 2GB, the imposed limit is the size of physical memory plus 2GB.
  • --maxsize= — The maximum partition size in megabytes when the partition is set to grow. Specify an integer value here such as 500 (do not include the unit).
  • --resize — Resize an existing partition. This option must be used in conjunction with the --size= to specify the new size and --onpart= to specify the partition.
  • --noformat — Specifies that the partition should not be formatted, for use with the --onpart command.
  • --onpart= or --usepart= — Specifies the device on which to place the partition. For example:
    partition /home --onpart=hda1
    puts /home on /dev/hda1.
    The device must already exist on the system; the --onpart option will not create it.
  • --ondisk= or --ondrive= — Forces the partition to be created on a particular disk. For example, --ondisk=sdb puts the partition on the second SCSI disk on the system.
    To specify a multipath device that does not use logical volume management (LVM), use the format disk/by-id/dm-uuid-mpath-WWID, where WWID is the world-wide identifier for the device. For example, to specify a disk with WWID 2416CD96995134CA5D787F00A5AA11017, use:
    part / --fstype=ext3 --grow --asprimary --size=100 --ondisk=disk/by-id/dm-uuid-mpath-2416CD96995134CA5D787F00A5AA11017
    Multipath devices that use LVM are not assembled until after anaconda has parsed the kickstart file. Therefore, you cannot specify these devices in the format dm-uuid-mpath. Instead, to specify a multipath device that uses LVM, use the format disk/by-id/scsi-WWID, where WWID is the world-wide identifier for the device. For example, to specify a disk with WWID 58095BEC5510947BE8C0360F604351918, use:
    part / --fstype=ext3 --grow --asprimary --size=100 --ondisk=disk/by-id/scsi-58095BEC5510947BE8C0360F604351918

    Warning — Never specify multipath devices by device names like mpatha

    Device names like mpatha are not specific to a particular disk. The disk named /dev/mpatha during installation might not be the one that you expect it to be. Therefore, the part command could target the wrong disk or partition.
  • --asprimary — Forces automatic allocation of the partition as a primary partition, or the partitioning fails.
  • --type= (replaced by fstype) — This option is no longer available. Use fstype.
  • --fsoptions — Specifies a free form string of options to be used when mounting the filesystem. This string will be copied into the /etc/fstab file of the installed system and should be enclosed in quotes.
  • --fsprofile — Specifies a usage type to be passed to the program that makes a filesystem on this partition. A usage type defines a variety of tuning parameters to be used when making a filesystem. For this option to work, the filesystem must support the concept of usage types and there must be a configuration file that lists valid types. For ext2, ext3, and ext4, this configuration file is /etc/mke2fs.conf.
  • --fstype= — Sets the file system type for the partition. Valid values are xfs, ext2, ext3, ext4, swap, vfat, and hfs.
  • --recommended — Determine the size of the partition automatically.
  • --onbiosdisk — Forces the partition to be created on a particular disk as discovered by the BIOS.
  • --encrypted — Specifies that this partition should be encrypted, using the passphrase provided in the --passphrase option. If you do not specify a passphrase, anaconda uses the default, system-wide passphrase set with the autopart --passphrase command, or stops the installation and prompts you to provide a passphrase if no default is set.
  • --passphrase= — Specifies the passphrase to use when encrypting this partition. You must use this option together with the --encrypted option; by itself it has no effect.
  • --escrowcert=URL_of_X.509_certificate — Store data encryption keys of all encrypted partitions as files in /root, encrypted using the X.509 certificate from the URL specified with URL_of_X.509_certificate. The keys are stored as a separate file for each encrypted partition. This option is only meaningful if --encrypted is specified.
  • --backuppassphrase= — Add a randomly-generated passphrase to each encrypted partition. Store these passphrases in separate files in /root, encrypted using the X.509 certificate specified with --escrowcert. This option is only meaningful if --escrowcert is specified.
  • --label= — assign a label to an individual partition.

Note

If partitioning fails for any reason, diagnostic messages appear on virtual console 3.
poweroff (optional)
Shut down and power off the system after the installation has successfully completed. Normally during a manual installation, anaconda displays a message and waits for the user to press a key before rebooting. During a kickstart installation, if no completion method is specified, the halt option is used as default.
The poweroff option is equivalent to the shutdown -p command.

Note

The poweroff option is highly dependent on the system hardware in use. Specifically, certain hardware components such as the BIOS, APM (advanced power management), and ACPI (advanced configuration and power interface) must be able to interact with the system kernel. Contact your manufacturer for more information on you system's APM/ACPI abilities.
For other completion methods, refer to the halt, reboot, and shutdown kickstart options.
raid (optional)
Assembles a software RAID device. This command is of the form:
raid <mntpoint> --level=<level> --device=<mddevice> <partitions*>
  • <mntpoint> — Location where the RAID file system is mounted. If it is /, the RAID level must be 1 unless a boot partition (/boot) is present. If a boot partition is present, the /boot partition must be level 1 and the root (/) partition can be any of the available types. The <partitions*> (which denotes that multiple partitions can be listed) lists the RAID identifiers to add to the RAID array.
  • --level= — RAID level to use (0, 1, or 5).
  • --device= — Name of the RAID device to use (such as md0 or md1). RAID devices range from md0 to md15, and each may only be used once.
  • --spares= — Specifies the number of spare drives allocated for the RAID array. Spare drives are used to rebuild the array in case of drive failure.
  • --grow= — Only supported for RAID0. Tells the RAID device to grow to fill available space (if any), or up to the maximum size setting.
  • --fsprofile — Specifies a usage type to be passed to the program that makes a filesystem on this partition. A usage type defines a variety of tuning parameters to be used when making a filesystem. For this option to work, the filesystem must support the concept of usage types and there must be a configuration file that lists valid types. For ext2, ext3, and ext4, this configuration file is /etc/mke2fs.conf.
  • --fstype= — Sets the file system type for the RAID array. Valid values are xfs, ext2, ext3, ext4, swap, vfat, and hfs.
  • --fsoptions= — Specifies a free form string of options to be used when mounting the filesystem. This string will be copied into the /etc/fstab file of the installed system and should be enclosed in quotes.
  • --noformat — Use an existing RAID device and do not format the RAID array.
  • --useexisting — Use an existing RAID device and reformat it.
  • --encrypted — Specifies that this RAID device should be encrypted, using the passphrase provided in the --passphrase option. If you do not specify a passphrase, anaconda uses the default, system-wide passphrase set with the autopart --passphrase command, or stops the installation and prompts you to provide a passphrase if no default is set.
  • --passphrase= — Specifies the passphrase to use when encrypting this RAID device. You must use this option together with the --encrypted option; by itself it has no effect.
  • --escrowcert=URL_of_X.509_certificate — Store the data encryption key for this device in a file in /root, encrypted using the X.509 certificate from the URL specified with URL_of_X.509_certificate. This option is only meaningful if --encrypted is specified.
  • --backuppassphrase= — Add a randomly-generated passphrase to this device. Store the passphrase in a file in /root, encrypted using the X.509 certificate specified with --escrowcert. This option is only meaningful if --escrowcert is specified.
The following example shows how to create a RAID level 1 partition for /, and a RAID level 5 for /usr, assuming there are three SCSI disks on the system. It also creates three swap partitions, one on each drive.
part raid.01 --size=60 --ondisk=sda
part raid.02 --size=60 --ondisk=sdb 
part raid.03 --size=60 --ondisk=sdc
part swap --size=128 --ondisk=sda  
part swap --size=128 --ondisk=sdb  
part swap --size=128 --ondisk=sdc
part raid.11 --size=1 --grow --ondisk=sda  
part raid.12 --size=1 --grow --ondisk=sdb  
part raid.13 --size=1 --grow --ondisk=sdc
raid / --level=1 --device=md0 raid.01 raid.02 raid.03  
raid /usr --level=5 --device=md1 raid.11 raid.12 raid.13
For a detailed example of raid in action, refer to Section 15.4.1, “Advanced Partitioning Example”.
realm (optional)
Join Active Directory or IPA domains, with the syntax:
realm join <options> <domain>
The options are as follows:
  • --client-software= — Only join realms that can run this client software. Valid values include sssd or winbind. Not all realms support all values. By default, the client software is chosen automatically.
  • --server-software= — Only join realms that can run this server software. Possible values include active-directory or freeipa.
  • --membership-software= — Use this software when joining the realm. Valid values include samba and adcli. Not all realms support all values. By default, the membership software is chosen automatically.
  • --one-time-password= — Join using a one-time password. This is not possible with all types of realm.
  • --no-password — Join automatically without a password.
  • --computer-ou OU= — provide the distinguished name of an organizational unit in order to create the computer account. The exact format of the distinguished name depends on the client software and membership software. The root DSE portion of the distinguished name can typically be left out.
reboot (optional)
Reboot after the installation is successfully completed (no arguments). Normally, kickstart displays a message and waits for the user to press a key before rebooting.
The reboot option is equivalent to the shutdown -r command.
For other completion methods, refer to the halt, poweroff, and shutdown kickstart options.
The halt option is the default completion method if no other methods are explicitly specified in the kickstart file.

Note

Use of the reboot option may result in an endless installation loop, depending on the installation media and method.
repo (optional)
Configures additional yum repositories that may be used as sources for package installation. Multiple repo lines may be specified.
repo --name=<repoid> [--baseurl=<url>| --mirrorlist=<url>]
  • --name= — The repo id. This option is required.
  • --baseurl= — The URL for the repository. The variables that may be used in yum repo config files are not supported here. You may use one of either this option or --mirrorlist, not both.
  • --mirrorlist= — The URL pointing at a list of mirrors for the repository. The variables that may be used in yum repo config files are not supported here. You may use one of either this option or --baseurl, not both.
  • --cost= — An integer value to assign a cost to this repository. If multiple repositories provide the same packages, this number will be used to prioritize which repository will be used before another. Repositories with a lower cost take priority over repositories with higher cost.
  • --excludepkgs= — A comma-separated list of package names and globs that must not be pulled from this repository. This is useful if multiple repositories provide the same package and you want to make sure it comes from a particular repository.
  • --include= — A comma-separated list of package names and globs that must be pulled from this repository. This is useful if multiple repositories provide the same package and you want to make sure it comes from this repository.
  • --proxy=[protocol://][username[:password]@]host[:port] — Specify an HTTP/HTTPS/FTP proxy to use just for this repository. This setting does not affect any other repositories, nor how the install.img is fetched on HTTP installs. The various parts of the argument act like you would expect.
  • --ignoregroups=true — This option is used when composing installation trees and has no effect on the installation process itself. It tells the compose tools to not look at the package group information when mirroring trees so as to avoid mirroring large amounts of unnecessary data.
  • --noverifyssl — For a https repo do not check the server's certificate with what well-known CA validate and do not check the server's hostname matches the certificate's domain name.

Important

Repositories used for installation must be stable. The installation may fail if a repository is modified before the installation concludes.
rootpw (required)
Sets the system's root password to the <password> argument.
rootpw [--iscrypted|--allow-changes|--frozen] <password>
  • --iscrypted — If this is present, the password argument is assumed to already be encrypted.
  • --allow-changes — If this is present, the password argument can be changed with no additional actions required.
  • --frozen — If this is present, the password argument cannot be changed.
selinux (optional)
Sets the state of SELinux on the installed system. SELinux defaults to enforcing in anaconda.
selinux [--disabled|--enforcing|--permissive]
  • --enforcing — Enables SELinux with the default targeted policy being enforced.

    Note

    If the selinux option is not present in the kickstart file, SELinux is enabled and set to --enforcing by default.
  • --permissive — Outputs warnings based on the SELinux policy, but does not actually enforce the policy.
  • --disabled — Disables SELinux completely on the system.
For more information regarding SELinux for Fedora, refer to the Fedora Security Guide.
services (optional)
Modifies the default set of services that will run under the default runlevel. The list of disabled services is processed before the list of enabled services. Therefore, if a service appears on both lists, it is enabled.
  • --disabled — Disable the services given in the comma separated list.
  • --enabled — Enable the services given in the comma separated list.

Do not include spaces in the list of services

If you include spaces in the comma-separated list, kickstart will enable or disable only the services up to the first space. For example:
services --disabled auditd, cups,smartd, nfslock
will disable only the auditd service. To disable all four services, this entry should include no spaces between services:
services --disabled auditd,cups,smartd,nfslock
shutdown (optional)
Shut down the system after the installation has successfully completed. During a kickstart installation, if no completion method is specified, the halt option is used as default.
The shutdown option is equivalent to the shutdown command.
For other completion methods, refer to the halt, poweroff, and reboot kickstart options.
skipx (optional)
If present, X is not configured on the installed system.

Package selection might configure X

If you install a display manager among your package selection options, this package will create an X configuration, and the installed system will default to run level 5. The effect of the skipx option is overridden.
sshpw (optional)
During installation, you can interact with anaconda and monitor its progress over an SSH connection. Use the sshpw command to create temporary accounts through which to log on. Each instance of the command creates a separate account that exists only in the installation environment. These accounts are not transferred to the installed system.
sshpw --username=<name> <password> [--iscrypted|--plaintext] [--lock]
  • --username — Provides the name of the user. This option is required.
  • --iscrypted — Specifies that the password is already encrypted.
  • --plaintext — Specifies that the password is in plain text and not encrypted.
  • --lock — If this is present, the new user account is locked by default. That is, the user will not be able to login from the console.

Important — You must boot with sshd=1

By default, the ssh server is not started during installation. To make ssh available during installation, boot the system with the kernel boot option sshd=1. Refer to Console, Environment and Display Options for details of how to specify this kernel option at boot time.
text (optional)
Perform the kickstart installation in text mode. Kickstart installations are performed in graphical mode by default.

Important

If you select text mode for a kickstart installation, make sure that you specify choices for the partitioning, bootloader, and package selection options. These steps are automated in text mode, and anaconda cannot prompt you for missing information. If you do not provide choices for these options, anaconda will stop the installation process.
timezone (required)
Sets the system time zone to <timezone>. Refer to https://fedoraproject.org/wiki/Anaconda/Kickstart for a list of supported timezones.
timezone [--utc] [--nontp] [--ntpservers=<server1>,<server2>,...,<serverN>] <timezone>
  • --utc — If present, the system assumes the hardware clock is set to UTC (Greenwich Mean) time.
  • --nontp — Disable the automatic activation of the NTP service.
  • --ntpservers= — Specify a list of NTP servers to be used, separated by commas without spaces.
upgrade (optional)
Tells the system to upgrade an existing system rather than install a fresh system. You must specify one of cdrom, harddrive, nfs, or url (for FTP and HTTP) as the location of the installation tree. Refer to install for details.
user (optional)
Creates a new user on the system.
user --name=<username> [--groups=<list>] [--homedir=<homedir>] [--password=<password>] [--iscrypted] [--shell=<shell>] [--uid=<uid>]
  • --name= — Provides the name of the user. This option is required.
  • --groups= — In addition to the default group, a comma separated list of group names the user should belong to. The groups must exist before the user account is created.
  • --homedir= — The home directory for the user. If not provided, this defaults to /home/<username>.
  • --password= — The new user's password. If not provided, the account will be locked by default.
  • --iscrypted= — Is the password provided by --password already encrypted or not?
  • --shell= — The user's login shell. If not provided, this defaults to the system default.
  • --uid= — The user's UID. If not provided, this defaults to the next available non-system UID.
vnc (optional)
Allows the graphical installation to be viewed remotely via VNC. This method is usually preferred over text mode, as there are some size and language limitations in text installs. With no options, this command will start a VNC server on the machine with no password and will print out the command that needs to be run to connect a remote machine.
vnc [--host=<hostname>] [--port=<port>] [--password=<password>]
  • --host= — Instead of starting a VNC server on the install machine, connect to the VNC viewer process listening on the given hostname.
  • --port= — Provide a port that the remote VNC viewer process is listening on. If not provided, anaconda will use the VNC default.
  • --password= — Set a password which must be provided to connect to the VNC session. This is optional, but recommended.
volgroup (optional)
Use to create a Logical Volume Management (LVM) group with the syntax:
volgroup <name> <partition> <options>
The options are as follows:
  • --noformat — Use an existing volume group and do not format it.
  • --useexisting — Use an existing volume group and reformat it.
  • --pesize= — Set the size of the physical extents.
Create the partition first, create the logical volume group, and then create the logical volume. For example:
part pv.01 --size 3000 
volgroup myvg pv.01 
logvol / --vgname=myvg --size=2000 --name=rootvol
For a detailed example of volgroup in action, refer to Section 15.4.1, “Advanced Partitioning Example”.
xconfig (optional)
Configures the X Window System. If you install the X Window System with a kickstart file that does not include the xconfig command, you must provide the X configuration manually during installation.
Do not use this command in a kickstart file that does not install the X Window System.
  • --driver — Specify the X driver to use for the video hardware.
  • --videoram= — Specifies the amount of video RAM the video card has.
  • --defaultdesktop= — Specify either GNOME or KDE to set the default desktop (assumes that GNOME Desktop Environment and/or KDE Desktop Environment has been installed through %packages).
  • --startxonboot — Use a graphical login on the installed system.
zerombr (optional)
If zerombr is specified any invalid partition tables found on disks are initialized. This destroys all of the contents of disks with invalid partition tables.
Note that this command was previously specified as zerombr yes. This form is now deprecated; you should now simply specify zerombr in your kickstart file instead.
%include (optional)
Use the %include /path/to/file command to include the contents of another file in the kickstart file as though the contents were at the location of the %include command in the kickstart file.

15.4.1. Advanced Partitioning Example

The following is a single, integrated example showing the clearpart, raid, part, volgroup, and logvol kickstart options in action:
clearpart --drives=hda,hdc --initlabel  
# Raid 1 IDE config 
part raid.11    --size 1000     --asprimary     --ondrive=hda 
part raid.12    --size 1000     --asprimary     --ondrive=hda 
part raid.13    --size 2000     --asprimary     --ondrive=hda 
part raid.14    --size 8000                     --ondrive=hda 
part raid.15    --size 16384 --grow             --ondrive=hda             
part raid.21    --size 1000     --asprimary     --ondrive=hdc 
part raid.22    --size 1000     --asprimary     --ondrive=hdc 
part raid.23    --size 2000     --asprimary     --ondrive=hdc 
part raid.24    --size 8000                     --ondrive=hdc 
part raid.25    --size 16384 --grow             --ondrive=hdc  

# You can add --spares=x  
raid /          --fstype ext3 --device md0 --level=RAID1 raid.11 raid.21 
raid /safe      --fstype ext3 --device md1 --level=RAID1 raid.12 raid.22 
raid swap       --fstype swap --device md2 --level=RAID1 raid.13 raid.23 
raid /usr       --fstype ext3 --device md3 --level=RAID1 raid.14 raid.24 
raid pv.01      --fstype ext3 --device md4 --level=RAID1 raid.15 raid.25  

# LVM configuration so that we can resize /var and /usr/local later 
volgroup sysvg pv.01     
logvol /var             --vgname=sysvg  --size=8000     --name=var 
logvol /var/freespace   --vgname=sysvg  --size=8000     --name=freespacetouse 
logvol /usr/local       --vgname=sysvg  --size=1 --grow --name=usrlocal
This advanced example implements LVM over RAID, as well as the ability to resize various directories for future growth.