Fedora Draft Documentation
Packager's Guide

A guide to software packaging for Fedora 18

Edition 18.0.1

		[image:]

	

Petr Kovář
Red Hat Engineering Content Services
pkovar@redhat.com

Legal Notice

		Copyright © 2012 Red Hat, Inc and others.
	

		The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		For guidelines on the permitted uses of the Fedora trademarks, refer to https://fedoraproject.org/wiki/Legal:Trademark_guidelines.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		All other trademarks are the property of their respective owners.
	

Abstract

			The Packager's Guide provides basic information on creating, building, and testing RPM packages, and spec file writing. It also contains a spec file reference. The audience are developers and system administrators who have a basic understanding of software packaging and RPM.
		

 ⁠Preface [Draft]

 ⁠1. Document Conventions [Draft]

		This manual uses several conventions to highlight certain words and phrases and draw attention to specific pieces of information.
	

 ⁠1.1. Typographic Conventions [Draft]

			Four typographic conventions are used to call attention to specific words and phrases. These conventions, and the circumstances they apply to, are as follows.
		

			Mono-spaced Bold
		

			Used to highlight system input, including shell commands, file names and paths. Also used to highlight keys and key combinations. For example:
		

				To see the contents of the file my_next_bestselling_novel in your current working directory, enter the cat my_next_bestselling_novel command at the shell prompt and press Enter to execute the command.
			

			The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all distinguishable thanks to context.
		

			Key combinations can be distinguished from an individual key by the plus sign that connects each part of a key combination. For example:
		

				Press Enter to execute the command.
			

				Press Ctrl+Alt+F2 to switch to a virtual terminal.
			

			The first example highlights a particular key to press. The second example highlights a key combination: a set of three keys pressed simultaneously.
		

			If source code is discussed, class names, methods, functions, variable names and returned values mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:
		

				File-related classes include filesystem for file systems, file for files, and dir for directories. Each class has its own associated set of permissions.
			

			Proportional Bold
		

			This denotes words or phrases encountered on a system, including application names; dialog-box text; labeled buttons; check-box and radio-button labels; menu titles and submenu titles. For example:
		

				Choose System → Preferences → Mouse from the main menu bar to launch Mouse Preferences. In the Buttons tab, select the Left-handed mouse check box and click Close to switch the primary mouse button from the left to the right (making the mouse suitable for use in the left hand).
			

				To insert a special character into a gedit file, choose Applications → Accessories → Character Map from the main menu bar. Next, choose Search → Find… from the Character Map menu bar, type the name of the character in the Search field and click Next. The character you sought will be highlighted in the Character Table. Double-click this highlighted character to place it in the Text to copy field and then click the Copy button. Now switch back to your document and choose Edit → Paste from the gedit menu bar.
			

			The above text includes application names; system-wide menu names and items; application-specific menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all distinguishable by context.
		

			Mono-spaced Bold Italic or Proportional Bold Italic
		

			Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable text. Italics denotes text you do not input literally or displayed text that changes depending on circumstance. For example:
		

				To connect to a remote machine using ssh, type ssh username@domain.name at a shell prompt. If the remote machine is example.com and your username on that machine is john, type ssh john@example.com.
			

				The mount -o remount file-system command remounts the named file system. For example, to remount the /home file system, the command is mount -o remount /home.
			

				To see the version of a currently installed package, use the rpm -q package command. It will return a result as follows: package-version-release.
			

			Note the words in bold italics above: username, domain.name, file-system, package, version and release. Each word is a placeholder, either for text you enter when issuing a command or for text displayed by the system.
		

			Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and important term. For example:
		

				Publican is a DocBook publishing system.
			

 ⁠1.2. Pull-quote Conventions [Draft]

			Terminal output and source code listings are set off visually from the surrounding text.
		

			Output sent to a terminal is set in mono-spaced roman and presented thus:
		
books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

			Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:
		
​package org.jboss.book.jca.ex1;
​
​import javax.naming.InitialContext;
​
​public class ExClient
​{
​ public static void main(String args[])
​ throws Exception
​ {
​ InitialContext iniCtx = new InitialContext();
​ Object ref = iniCtx.lookup("EchoBean");
​ EchoHome home = (EchoHome) ref;
​ Echo echo = home.create();
​
​ System.out.println("Created Echo");
​
​ System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
​ }
​}

 ⁠1.3. Notes and Warnings [Draft]

			Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.
		
Note [Draft]

				Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should have no negative consequences, but you might miss out on a trick that makes your life easier.
			

Important [Draft]

				Important boxes detail things that are easily missed: configuration changes that only apply to the current session, or services that need restarting before an update will apply. Ignoring a box labeled “Important” will not cause data loss but may cause irritation and frustration.
			

Warning [Draft]

				Warnings should not be ignored. Ignoring warnings will most likely cause data loss.
			

 ⁠2. We want feedback [Draft]

		If you find errors or have suggestions for improvement, we want your advice. Submit a report in Bugzilla against the product Fedora Documentation and the component packager-guide. The following link automatically loads this information for you: http://bugzilla.redhat.com/.
	

			In Bugzilla:
		
	
				Provide a short summary of the error or your suggestion in the Summary field.
			

	
				Copy the following template into the Description field and give us the details of the error or suggestion as specifically as you can. If possible, include some surrounding text so we know where the error occurs or the suggestion fits.
			
Document URL:

Section number and name:

Error or suggestion:

Additional information:

	
				Click the Submit Bug button.
			

 ⁠3. Acknowledgments [Draft]

			Certain portions of this text first appeared in the Fedora Packaging Documentation, copyright © 2012 Red Hat, Inc. and others, published by the Fedora Project at http://fedoraproject.org/wiki/Category:Package_Maintainers.
		

			Certain portions of this text first appeared in the Fedora Packaging Guidelines, copyright © 2012 Red Hat, Inc. and others, published by the Fedora Project at https://fedoraproject.org/wiki/Special:PrefixIndex/Packaging.
		

			Certain portions of this text first appeared in the Fedora RPM Guide, copyright © 2010 Red Hat, Inc. and others, published by the Fedora Project at http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/index.html.
		

			The author of this book would like to thank the following people for their valuable contributions: Jindřich Nový, Vít Ondruch, Chris Negus, Richard Fontana, Abdel Gadiel Martínez Lassonde, Jaromír Hradílek, Douglas Silas, and Florian Nadge, among many others.
		

 ⁠Chapter 1. Exploring the Structure of Packages [Draft]

		This chapter describes the package design, defines the basic content of every package, and shows how to explore the package structure.
	

 ⁠1.1. Packaging with RPM [Draft]

			The Red Hat Package Manager (RPM) makes it easier for you to distribute, manage, and update software that you create for Red Hat Enterprise Linux. This chapter provides basic information on how to package your software into an RPM.
		

 ⁠1.1.1. Why Package Software with RPM? [Draft]

				Many software vendors distribute their software via a conventional archive file (such as a tarball). However, there are several advantages in packaging software into an RPM. These advantages include:
			
	
						Each RPM package includes metadata that describes the package's components, version, release, size, project URL, installation instructions, and so on.
					

	
						Users can use a set of standard package management tools (for example yum or PackageKit) to install, remove, and manage your software.
					

	
						With the standard package management tools, you can directly distribute your software, including any software updates, to your users.
					

 ⁠1.2. Package Design [Draft]

			As a part of their design, RPM packages consist of the following three parts:
		
	Metadata
	
						The metadata part defines the package itself, including its name, version, license, a list of changes, dependencies, and so on.
					

	Files
	
						This part consists of an archive with files that are installed by the package on the system.
					

	Scripts
	
						This part contains scripts, which are run when the package is installed, updated, or uninstalled.
					

			Each of these three parts must be defined, provided, or included by the package in order to successfully build, install, or uninstall the package.
		

 ⁠1.2.1. Package File Name [Draft]

				Every package file is labeled with a highly identifiable name. This name has four parts, which typically look something like:
			
	
						kernel-smp-2.6.32.9-3.i686.rpm
					

	
						kernel-smp-2.6.32.9-3.x86_64.rpm
					

	
						rootfiles-7.2-1.noarch.rpm
					

				Here, the four parts of each name are separated from each other by dashes or periods. The structure of the package file name is as follows:
			
	
						name-version-release.architecture.rpm
					

 ⁠1.2.1.1. Package Architecture [Draft]

					RPM supports various architectures. The following table presents some of the architectures available for different platforms that are supported by Fedora 18.
				

 ⁠Table 1.1. Package Architecture [Draft]
	Platform	Architecture
	Intel x86 or compatible	i386, i686
	AMD64 / Intel 64	x86_64
	Intel Itanium	ia64
	IBM POWER	ppc64
	IBM System z	s390x, s390
	No architecture	noarch

					A platform-independent package, which is identified with noarch in the architecture part of the file name, provides programs that are not dependent on any platform. Programs written in Perl, Python, or other scripting languages often do not depend on code compiled for a particular architecture. In addition, compiled Java applications are usually free of platform dependencies, thus are also distributed in the form of platform-independent packages.
				

 ⁠1.2.1.2. Source RPM [Draft]

					A source RPM package (SRPM) contain all the commands, usually in scripts, necessary to recreate the binary RPM. Having a SRPM means that you can recreate the binary RPM at any time. A SRPM has a file name ending in .src.rpm, for example:
				
	
							mlocate-0.22.2-2.src.rpm
						

					The SRPM distributes a source code for the corresponding software that is ready to be installed on the system with the binary RPM. It also includes a spec file, which describes the software and the package, and contains instructions on how to perform the installation on the system.
				

 ⁠1.2.2. Format of the Archived Files [Draft]

				The archive with files, which are installed by the package, is stored in the cpio format inside the package and is compressed with the xz program.
			

				To decompress the included archive and extract the archived files, run the command in the following format:
			
 rpm2cpio package | cpio -id

				For example, to decompress the archive included in the eject-2.1.5-0.1.fc18.x86_64.rpm package, run the following command:
			
 rpm2cpio eject-2.1.5-0.1.fc18.x86_64.rpm | cpio -id

 ⁠1.2.3. Querying Packages [Draft]

				The rpm allows you to query packages that are available on the system. This way, you can easily explore the basic structure of the packages.
			

				Some of the useful commands for querying the packages include:
			
	 rpm -qd package
	
							The rpm -qd package command is used to get a list of included documentation files, which are defined by the %doc directive.
						

	 rpm -qc package
	
							The rpm -qc package command is used to get a list of included configuration files, which are defined by the %config directive.
						

	 rpm -q --scripts package
	
							The rpm -q --scripts package command is used to get a list of scripts, which are defined by the %pre, %post, %preun, and %postun directives.
						

 ⁠Chapter 2. Creating and Building Packages [Draft]

		This chapter shows you how to convert a source archive into an RPM package.
	

 ⁠2.1. Preparing a Build Environment [Draft]

			This section shows how to prepare an environment for building RPM packages on your system.
		

 ⁠2.1.1. Creating a Non-Root Buildroot [Draft]

				These steps show how to create a non-root buildroot environment. This non-root environment is used to build packages as a normal user, without the need of becoming the root user. Because some of the software source archives can contain code in a makefile or script that can possibly damage your system, it is highly recommended to build packages as a user that does not have full access to the system.
			

 ⁠Procedure 2.1. Creating a non-root buildroot [Draft]
	
						As root, install the rpmdevtools package with the following command:
					
 yum install -y rpmdevtools

	
						As a normal user, run the following command to create the ~/rpmbuild/ directory where packages are built:
					
 rpmdev-setuptree

 ⁠2.2. Creating a Basic Spec File [Draft]

			This section shows how to write a basic spec file for your RPM package.
		

 ⁠2.2.1. Creating an Example Spec File for eject [Draft]

				These steps show an example of creating a package from the source code archive of the eject utility. The eject utility is a simple software that ejects removable media using software control so it is an ideal candidate for creating a basic spec file.
			

 ⁠Procedure 2.2. Creating an example package: eject [Draft]
	
						In a shell prompt, go into the buildroot and create a new spec file for your package.
					
	
								To create a spec file template with the rpmdev-newspec command, run the following commands:
							
 cd ~/rpmbuild/SPECS
 rpmdev-newspec eject

								This creates a new spec file called eject.spec in the ~/rpmbuild/SPECS directory.
							

	
								To specify a spec file template for a particular type of packages, refer to the contents of the /etc/rpmdevtools/ directory, which includes spec file templates called spectemplate-type.spec. For example, to create a new spec file for a Python module, run the following commands:
							
 cd ~/rpmbuild/SPECS
 rpmdev-newspec python-antigravity

	
								For more information on creating a new spec file with rpmdev-newspec, run the rpmdev-newspec --help command.
							

	
								Alternatively, you can use the vim editor to create a spec file template for you. Change to the buildroot and run vim with the name of the spec file you want to create:
							
 cd ~/rpmbuild/SPECS
 vi eject.spec

	
						Open the spec file in a text editor. The spec file should be similar to the following example:
					
​Name: eject
​Version:
​Release: 1%{?dist}
​Summary:
​
​Group:
​License:
​URL:
​Source0:
​BuildRoot: %{_tmppath}/%{name}-%{version}-%{release}-root-%(%{__id_u} -n)
​
​BuildRequires:
​Requires:
​
​%description
​
​
​%prep
​%setup -q
​
​
​%build
​%configure
​make %{?_smp_mflags}
​
​
​%install
​rm -rf $RPM_BUILD_ROOT
​make install DESTDIR=$RPM_BUILD_ROOT
​
​
​%clean
​rm -rf $RPM_BUILD_ROOT
​
​
​%files
​%defattr(-,root,root,-)
​%doc
​
​
​
​%changelog
The Group and BuildRoot tags are deprecated [Draft]

							Although the Group and BuildRoot tags are included in the spec file templates, RPM in Fedora 18 does not require the presence of these tags in the spec file and ignores them.
						

The %clean and %defattr directives are deprecated [Draft]

							Although the %clean and %defattr directives are included in the spec file templates, RPM in Fedora 18 does not require the presence of these directives in the spec file and ignores them.
						

	
						Edit the Release tag to set the release value of the package. For example, set the value to 1%{?dist} if you are creating the initial release of the package:
					
​Release: 1%{?dist}

						The {?dist} tag is used to mark the distribution revision of a package.
					

	
						Fill in the version and add a summary of the software:
					
​Version: 2.1.5
​Release: 1%{?dist}
​Summary: A program that ejects removable media using software control

	
						For the License tag, fill in the appropriate license for the software. In this case, eject uses the GNU General Public License v2.0 or later. The short name for this license is GPLv2+:
					
​License: GPLv2+

	
						From the eject project website, get the URL of the website and fill it in the URL tag:
					
​URL: http://www.pobox.com/~tranter

	
						In the Source tag, fill in the URL of the source archive for the package:
					
​Source0: http://www.ibiblio.org/pub/Linux/utils/disk-management/%{name}-%{version}.tar.gz

	
						Edit the BuildRequires tag with requirements that are needed to build the package. BuildRequires can contain either a list of required packages or files. For example, the eject package requires the gettext and libtool packages:
					
​BuildRequires: gettext
​BuildRequires: libtool

	
						It is recommended to add a list of requirements that this package depends on to the Requires tag. Requires can contain either a list of required packages or files.
					

						In many cases, however, rpmbuild is able to detect the dependencies automatically for you so that you do not need to add them manually. For example, the eject package does not need any explicit requirements in the Requires tag, so do not include the tag in the spec file.
					

	
						Add a description for the package. The lines of text in %description should be at most 79 characters long:
					
​%description
​The eject program allows the user to eject removable media (typically
​CD-ROMs, floppy disks or Iomega Jaz or Zip disks) using software
​control. Eject can also control some multi-disk CD changers and even
​some devices' auto-eject features.
​
​Install eject if you'd like to eject removable media using software
​control.

	
						Add the %check section between the sections %build and %install in the spec file. The %check section typically contains the make test or make check command that runs any self-tests distributed with the software:
					
​%check
​make check

	
						Edit the %install section by adding the following installation instructions that are specific to eject the to the spec file:
					
install -m 755 -d $RPM_BUILD_ROOT/%{_sbindir}
ln -s ../bin/eject $RPM_BUILD_ROOT/%{_sbindir}

						This calls the install program and creates a symbolic link, which is necessary to properly build and install the eject package.
					

	
						Because the eject utility includes translation files, you need to define a macro called %find_lang, which will locate all of the translation files that belong to the package, and put this list in a file called %{name}.lang.
					
	
								To define the %find_lang macro, add the following to the %install section:
							
​%find_lang %{name}

	
								To include the %{name}.lang file with a list of translation files, add the file name with the -f option to %files:
							
​%files -f %{name}.lang

	
						Add the list of documentation files that are included in eject to the %doc directive:
					
​%doc README TODO COPYING ChangeLog

	
						Edit %changelog to describe the last change you have made to the package. Fill it in with the date, your name and email address, the version and release of the package, and a short description of what has changed in the package in the following format:
					
* date Packager's Name <packager's_email> version-revision
- Summary of changes

						To get the changelog entry in the required format, you can use the rpmdev-bumpspec utility. Run the following command:
					
 rpmdev-bumpspec --comment=summary of changes --userstring=Packager's Name <packager's_email> spec file

						Because this is the first release of the package, run the rpmdev-bumpspec command with the following options:
					
 rpmdev-bumpspec --comment="Initial RPM release" --userstring="John Doe <jdoe@example.com>" eject.spec

						This will produce a changelog entry in the spec file similar to the following:
					
%changelog
* Wed Oct 20 2011 John Doe <jdoe@example.com> 2.1.5-0.1
- Initial RPM release

	
						Now the spec file should look like in the following example:
					
​Name: eject
​Version: 2.1.5
​Release: 1%{?dist}
​Summary: A program that ejects removable media using software control
​
​License: GPLv2+
​URL: http://www.pobox.com/~tranter
​Source0: http://www.ibiblio.org/pub/Linux/utils/disk-management/%{name}-%{version}.tar.gz
​
​BuildRequires: gettext
​BuildRequires: libtool
​
​%description
​The eject program allows the user to eject removable media (typically
​CD-ROMs, floppy disks or Iomega Jaz or Zip disks) using software
​control. Eject can also control some multi-disk CD changers and even
​some devices' auto-eject features.
​
​Install eject if you'd like to eject removable media using software
​control.
​
​%prep
​%setup -q -n
​
​%build
​%configure
​make %{?_smp_mflags}
​
​%check
​make check
​
​%install
​rm -rf $RPM_BUILD_ROOT
​make install DESTDIR=$RPM_BUILD_ROOT
​
​install -m 755 -d $RPM_BUILD_ROOT/%{_sbindir}
​ln -s ../bin/eject $RPM_BUILD_ROOT/%{_sbindir}
​
​%find_lang %{name}
​
​%files -f %{name}.lang
​%doc README TODO COPYING ChangeLog
​%{_bindir}/*
​%{_sbindir}/*
​%{_mandir}/man1/*
​
​%changelog
​* Wed Oct 20 2011 John Doe <jdoe@example.com> 0.8.18.1-0.1
​- Initial RPM release

 ⁠2.3. Building a Package [Draft]

			This section shows how to build your RPM package with the rpmbuild command.
		
Run rpmbuild as a non-root user [Draft]

				It is highly recommended to always run the rpmbuild command as a non-root, normal, user. If you build a package as the root user, possible mistakes in the spec file, for example in the %install section, can cause damage to your system.
			

 ⁠2.3.1. Building an Example Package: eject [Draft]

				These steps show an example of building a package with a previously created spec file of the eject utility. For installation, eject only requires a minimum set of package dependencies. This makes it a good project to examine for package building.
			

				Before starting with the package building process itself, make sure that you have created a non-root buildroot on your system.
			

 ⁠Procedure 2.3. Building an example package: eject [Draft]
	
						Download the source code archive for eject and place it in the ~/rpmbuild/SOURCES/ directory.
					

	
						Obtain the spec file for eject and place it in the ~/rpmbuild/SPECS/ directory.
					

	
						In a shell prompt, change to the ~/rpmbuild/SPECS/ directory and run the rpmbuild command:
					
 cd ~/rpmbuild/SPECS
 rpmbuild -ba eject.spec

	
						If you end up with an error message similar to the following one, it means that you have not installed the package dependencies required by the eject package:
					
error: Failed build dependencies:
libtool is needed by eject-2.1.5-0.1.x86_64
	
								You can use yum to install the needed files or packages. Run the following command to install the required libtool package:
							
 yum install -y libtool

	
						In case you have received a build error related to the %install section, you may want to skip earlier stages of the build process with the --short-circuit option and restart the build process at the %install stage:
					
 rpmbuild -bi --short-circuit eject.spec

	
						Once you get a clean build, the last line of the rpmbuild output will be as follows:
					
+ exit 0

	
						After a successful build with the rpmbuild -ba eject.spec command, the binary package will be placed in a subdirectory of the ~/rpmbuild/RPMS/ directory and the source package will be placed in ~/rpmbuild/SRPMS/.
					

	
						If you just want to create a source package (.src.rpm), run the following command:
					
 rpmbuild -bs eject.spec

						This will create the source package in the ~/rpmbuild/SRPMS/ directory, or recreate it if it has been previously created.
					

 ⁠2.4. Testing a Package [Draft]

			This section shows how to use the rpmlint utility to test an RPM package. rpmlint can be used to test spec files, binary packages, and source packages. It is highly recommended to run rpmlint every time you make changes to the package.
		

 ⁠2.4.1. Testing a Spec File [Draft]

				These steps show how to test a spec file of a package with the rpmlint utility.
			

 ⁠Procedure 2.4. Testing a spec file with rpmlint [Draft]
	
						If you have not previously installed the rpmlint package, install it now with the following command:
					
 yum install -y rpmlint

	
						To test a spec file with rpmlint, run the following command:
					
 rpmlint package.spec

						By checking the spec file for correctness with the above command, rpmlint is able to catch many errors that can be often found in new or significantly changed spec files.
					

	
						If the error messages reported with the above command are not clear enough, use the -i option, which provides more information on each error:
					
 rpmlint -i package.spec

						Refer to the Fedora Packaging Guidelines for information on what rpmlint errors can be typically ignored.
					

 ⁠2.4.2. Testing a Spec File, Binary, and Source Package [Draft]

				These steps show how to test a spec file, a binary package, and a source package with the rpmlint utility.
			

 ⁠Procedure 2.5. Testing a spec file, binary, and source package with rpmlint [Draft]
	
						Change to the ~/rpmbuild/SPECS/ directory in the buildroot environment and run the following command:
					
 rpmlint package.spec ../RPMS/*/package*.rpm ../SRPMS/package*.rpm

						After running the command, rpmlint will build binary packages with debugging information.
					

	
						Change to the ~/rpmbuild/RPMS/architecture/ directory to locate the binary packages that were built with rpmlint.
					

	
						To check the files and their permissions included in the binary packages, use the rpmls command:
					
 rpmls *.rpm

	
						If the included files and their permissions are correct, proceed with running the following command as root to install the included files:
					
 rpm -ivp package.rpm

						After a successful installation, you can test the installed files on your system.
					

	
						After you have finished testing of the installed files, run the following command to uninstall the previously installed packages:
					
 rpm -e package.rpm

 ⁠2.4.3. Testing a Package with Mock [Draft]

				These steps show how to test a package with the help of Mock. Mock creates chroots and builds packages in them. Its only task is to reliably populate a chroot and attempt to build a package in that chroot. Use Mock to test that you have accurate definitions of the build dependencies in your spec file.
			

 ⁠Procedure 2.6. Testing a package with Mock [Draft]
	
						As root, run the following command to add your normal user that you intend to use with Mock to the mock group:
					
 usermod -a G mock user_name && newgrp mock

	
						Create a source package with the following command:
					
 rpmbuild -bs package.spec

						where package.spec is the name of the spec file for your package.
					

	
						To test a package locally with Mock, run the following command:
					
 mock -r config_name rebuild path_to_source_package

						where config_name is the name of the configuration name. The configuration file name contains the name of the used system architecture and operating system (for example Fedora 18). Refer to the /etc/mock/ directory for a list of available configuration files.
					

						For example, to test the ~/rpmbuild/SRPMS/eject-2.1.5-0.1.fc18.src.rpm package for the AMD64 (x86_64) architecture on Fedora 18, run the following command:
					
 mock -r epel-6-x86_64 ~/rpmbuild/SRPMS/eject-2.1.5-0.1.fc18.src.rpm

 ⁠Appendix A. Spec File Reference [Draft]

		Spec files are text files that contain RPM directives and macro definitions, which are used to build an RPM package. The RPM directives and macros are divided into a number of sections. Each of these sections is delimited with a % marker. For example, the build section starts with %build.
	

		A typical spec file consists of approximately five sections:
	
	Preamble
	
					The preamble describes the basic information on the package, for example name, version, license, and so on.
				

	Build section
	
					The build section includes instructions, which are used to build and prepare the package for installation.
				

	Scriptlets
	
					The scriptlets define commands used to install, upgrade, or uninstall the package.
				

	Manifest
	
					The manifest section includes a list of packaged files and their permissions.
				

	Changelog
	
					The changelog section consists of a list of changes made to the package.
				

 ⁠A.1. Spec File Directives [Draft]

			Directives in a spec file are defined using a simple syntax of a tag name, a colon, and a value:
		
​TagName: value

			For example, the following directive sets the package version to 1.15:
		
​Version: 1.15

			The name of the item is not case sensitive, so tag names of version, Version, or VERSION all set the same value. This syntax works for most settings, including Name, Release, and so on.
		

 ⁠A.2. Spec File Macros [Draft]

			In addition to the spec file directive syntax, you can define macros using the RPM %global syntax. For example:
		
​%global major 2

			The example above defines a macro named major with a value of 2.
		

			Once defined, you can access macros using the syntax %{macro_name} or just %macro_name. For example:
		
​source: %{name}-%{version}.tar.gz

 ⁠A.3. Spec File Comments [Draft]

			To include comments in the spec file, use a # character at the start of the line. That way, the line will be ignored by RPM.
		

			Because macros are expanded first, do not insert any multiline macros in a comment. If you want to comment out a line with a macro, double the percent signs (%%) as in the following example:
		
​# %%configure

			Also, do not use inline comments ("#") on the same line after a script command.
		

 ⁠A.4. Spec File Example [Draft]

			Below is an example of a spec file from the eject package in Fedora 18.
		
​
​Summary: A program that ejects removable media using software control
​Name: eject
​Version: 2.1.5
​Release: 11%{dist}
​License: GPL
​Source: http://metalab.unc.edu/pub/Linux/utils/disk-management/%{name}-%{version}.tar.gz
​Source1: eject.pam
​Patch1: eject-2.1.1-verbose.patch
​Patch2: eject-timeout.patch
​Patch3: eject-2.1.5-opendevice.patch
​Patch4: eject-2.1.5-spaces.patch
​Patch5: eject-2.1.5-lock.patch
​Patch6: eject-2.1.5-umount.patch
​URL: http://www.pobox.com/~tranter
​ExcludeArch: s390 s390x
​BuildRequires: gettext
​BuildRequires: automake
​BuildRequires: autoconf
​BuildRequires: libtool
​
​%description
​The eject program allows the user to eject removable media (typically
​CD-ROMs, floppy disks or Iomega Jaz or Zip disks) using software
​control. Eject can also control some multi-disk CD changers and even
​some devices' auto-eject features.
​
​Install eject if you'd like to eject removable media using software
​control.
​
​%prep
​%setup -q -n %{name}
​%patch1 -p1 -b .verbose
​%patch2 -p1 -b .timeout
​%patch3 -p0 -b .opendevice
​%patch4 -p0 -b .spaces
​%patch5 -p0 -b .lock
​%patch6 -p1 -b .umount
​
​%build
​%configure
​make
​
​%install
​rm -rf %{buildroot}
​
​make DESTDIR=%{buildroot} install
​
​# pam stuff
​install -m 755 -d %{buildroot}/%{_sysconfdir}/pam.d
​install -m 644 %{SOURCE1} %{buildroot}/%{_sysconfdir}/pam.d/%{name}
​install -m 755 -d %{buildroot}/%{_sysconfdir}/security/console.apps/
​echo "FALLBACK=true" > %{buildroot}/%{_sysconfdir}/security/console.apps/%{name}
​
​install -m 755 -d %{buildroot}/%{_sbindir}
​pushd %{buildroot}/%{_bindir}
​mv eject ../sbin
​ln -s consolehelper eject
​popd
​
​%find_lang %{name}
​
​%files -f %{name}.lang
​%doc README TODO COPYING ChangeLog
​%attr(644,root,root) %{_sysconfdir}/security/console.apps/*
​%attr(644,root,root) %{_sysconfdir}/pam.d/*
​%{_bindir}/*
​%{_sbindir}/*
​%{_mandir}/man1/*
​
​%changelog
​* Wed Apr 02 2008 Zdenek Prikryl <zprikryl at, redhat.com> 2.1.5-11
​- Added check if device is hotpluggable
​- Resolves #438610

			The example above shows the usage of some of the directives and macros in a spec file. Refer to Section A.5, “Spec File Preamble” [Draft] for a detailed description of the directives and macros.
		

 ⁠A.5. Spec File Preamble [Draft]

			This section include a list with descriptions of some of the more frequently used directives in spec files.
		
	 Name: name
	
						The Name: tag defines the (base) name of the package. This name must follow the Fedora Package Naming Guidelines. Also, this name should match the spec file name. In many cases, the name will be in all lower case. For example:
					
​Name: eject

						Elsewhere in the spec file, you can refer to the name using the macro %{name}. That way, if the name changes, the new name will be used by those other locations.
					

	 Version: version
	
						The Version tag defines the upstream version number. If the version is non-numeric (that is it contains tags that are not numbers or digits), you may need to include the additional non-numeric characters in the Release tag. If upstream uses full dates to distinguish versions, consider using version numbers of the form yy.mm[.dd] (so a 2008-05-01 release becomes 8.05). See Fedora Package Naming Guidelines for more information. An example of the Version tag:
					
​Version: 2.1.5

						Elsewhere in the spec file, refer to the tag value as %{version}. That way, if the tag value changes, the new value will be used by those other locations.
					

	 Release: release
	
						The Release tag defines the value of the package's version. The initial release will typically be defined as 1%{?dist}. After the initial release, increment the number every time a new package is released for the same version of software. If a new version of the packaged software is released, the Version tag should be changed to reflect the new software version, and the Release tag should be reset to 1. See Fedora Package Naming Guidelines for more information. Refer to the Fedora Dist Tag Guidelines for a description of the dist tag, which is not required but can be useful. An example of the Release tag:
					
​Release: 11%{dist}

						Elsewhere in the spec file, refer to the tag value as %{release}. That way, if the tag value changes, the new value will be used by those other locations.
					

	 Summary: summary
	
						The Summary tag defines a brief, one-line summary of the package. Do not use a period at the end of the summary. For example:
					
​Summary: A program that ejects removable media using software control

	 Group: group
	
						The Group tag defines a package group, which the package is a part of. The tag must define a previously existing group, for example Applications/Engineering. To display a complete list of existing groups, run the following command:
					
less /usr/share/doc/rpm-*/GROUPS

						If you create a package-doc sub-package with documentation, use the group Documentation. An example of the Group tag:
					
​Group: System Environment/Base
The Group tag is deprecated [Draft]

							RPM in Fedora 18 does not require the presence of the Group tag in the spec file. If the tag is defined, it will be ignored. The package groups of the yum application are used on a Fedora 18 system as the relevant source of information on which group is the package a part of.
						

	 License: license
	
						The License tag defines the license of the packaged software. Use a standard abbreviation, for example GPLv2+. The definition of the license should be specific; for example do not use GPL or GPLv2 when the license is in fact GPL version 2 or greater, that is GPLv2+. You can list multiple licenses in the tag by combining them with words and and or, for example GPLv2 and BSD. Refer to the Fedora Licensing Document and the Licensing Guidelines for more information on this topic.
					

						Do not use the tag Copyright in place of the License tag. An example of the License tag:
					
​License: GPL

	 URL: URL
	
						The URL tag defines the URL with more information about the program, for example the project website. This tag does not define where the original source code came from, use the the tag Source for that purpose. An example of the URL tag:
					
​URL: http://www.pobox.com/~tranter

	 Source0: URL
	
						The Source tag defines a URL for the compressed archive containing the (original) unmodified source code, as upstream released it. The tag Source is the same as the tag Source0. Because a full URL should be provided with this tag, its basename can be then used when looking in the SOURCES/ directory. If possible, add %{name} and %{version} to the URL.
					

						The tag Source and the tag URL are used for different purposes. Typically, they are both URLs, but the URL tag points to the project website, while the Source tag points to the actual file containing the source code.
					

						When downloading the source code, consider using a client that preserves the upstream timestamps, such as wget. For example:
					
wget -N URL

						If you are using curl, run the following command:
					
curl -R URL

						If there is more than one source, name them Source1, Source2, and so on. If you are adding whole new files in addition to the unmodified sources, you can list each of them as sources as well, but list them after the unmodified sources. Remember to include a copy of each of these sources in any source package you create. For information on exceptions to this rule, such as when using revision control system, upstream using prohibited code, and so on, refer to the Fedora Source URL Guidelines. An example of the Source tag:
					
​Source1: eject.pam

	 Patch0: file_name
	
						The Patch0: tag defines the name of the first patch that you will apply to the source code. If you need to patch the files after they have been uncompressed, edit the files, save their differences as a patch file in the ~/rpmbuild/SOURCES/ directory. Patches should make only one logical change, so it is likely to have multiple patch files. If there is more than one source, name them Patch1, Patch2, and so on. An example of the Patch1 tag:
					
​Patch1: eject-2.1.1-verbose.patch

	 BuildArch: architecture
	
						The BuildArch tag is used to define the build architecture of the package. If you are packaging files that are architecture-independent, for example shell scripts, data files, and so on, use BuildArch: noarch. In this case, the architecture for the binary RPM will be noarch. An example of the BuildArch tag:
					
​BuildArch: noarch

	 ExcludeArch: architecture
	
						The ExcludeArch tag defines any excluded build architecture. If the package does not successfully compile, build or work on an architecture, then the architecture should be defined in the ExcludeArch tag. An example of the ExcludeArch tag:
					
​ExcludeArch: i386

	 BuildRoot: build root
	
						The BuildRoot defines the location of the files installed during the %install process, which happens after the %build compilation process. In a typical situation, leave this line alone: under the usual Fedora 18 setup, a macro that will create a new special subdirectory in the /var/tmp/ directory will be used. Newer versions of RPM ignore this value, and instead place the build root in %{_topdir}/BUILDROOT/. An example of the BuildRoot tag:
					
​BuildRoot: %{_tmppath}/%{name}-%{version}-%{release}-root
The BuildRoot tag is deprecated [Draft]

							RPM in Fedora 18 does not require the presence of the BuildRoot tag in the spec file. If the tag is defined, it will be ignored. The provided buildroot will automatically be cleaned before commands in %install are called.
						

	 BuildRequires: requirements
	
						The BuildRequires tag defines a comma-separated list of packages required for building (or compiling) the software. These are not automatically determined, so you must include every package needed to build the software.
					

						There are a few packages that are so common in builds that you do not need to mention them, such as gcc. Refer to the Fedora Packaging Guidelines for a complete list of the packages you may omit.
					

						You can use more than one BuildRequires tag, in which case all BuildRequires tags they are all required for building. If necessary, you can also specify a minimum version of the package, for example:
					
​ocaml >= 3.08

						
						Try to specify only the minimal set of packages necessary to properly build the package, since each one will slow down a mock-based build.
						 An example of the BuildRequires tag:
					
​BuildRequires: gettext

	 Requires: requirements
	
						The Requires tag defines a comma-separate list of packages that are required when the software is installed. Remember that the list of packages for the Requires tag and the BuildRequires tag are independent: a package may be in one list but not the other, or it can be in both. The dependencies of binary packages are in many cases automatically detected by pmbuild, so it is often the case that you do not need to specify the Requires tag at all. But if you want to highlight some specific packages as being required, or require a package that RPM cannot detect should be required, then add it to the Requires tag. An example of the Requires tag:
					
​Requires: gettext

	 %description description text
	
						The %description directive defines a longer, multiline description of the package. All lines must be 80 characters long or less. Blank lines are assumed to separate paragraphs. Remember that some graphical user interface installation programs will reformat paragraphs. Lines that start with whitespace, such as a space or tab, will be treated as preformatted text and displayed as is, normally with a fixed-width font. An example of the %description directive:
					
​%description
​The eject program allows the user to eject removable media (typically
​CD-ROMs, floppy disks or Iomega Jaz or Zip disks) using software
​control. Eject can also control some multi-disk CD changers and even
​some devices' auto-eject features.
​
​Install eject if you'd like to eject removable media using software
​control.

	 %prep
	
						The %prep directive defines script commands to prepare the software before the start of the building process. In a typical situation, the definition is similar to %setup -q. For example, if the source file unpacks into name, the definition is %setup -q -n name.
						 An example of the %prep directive:
					
​%prep
​%setup -q -n %{name}
​%patch1 -p1 -b .verbose

	 %build
	
						The %build directive defines script commands to build (compile) the software, that is, to get it ready for installing.
						 An example of the %build directive:
					
​%build
​%configure
​make

	 %check
	
						The %check directive defines script commands to self-test the program. The self-tests are run after %build and before %install, so the %check directive should be placed accordingly between the directives mentioned above. Usually, the %check directive contains the make test or make check commands. These commands are separated from the %build directive so that users can skip the self-test process, if they desire.
					
​%check
​make check

	 %install
	
						The %install directive defines script commands to install the software. The script commands copy the build files from the build directory %{_builddir} (usually a subdirectory of the directory ~/rpmbuild/BUILD/) into the build root directory %{buildroot} (usually a subdirectory of the directory /var/tmp/).
						 An example of the%install directive:
					
​%install
​rm -rf %{buildroot}
​
​make DESTDIR=%{buildroot} install
​
​install -m 755 -d %{buildroot}/%{_sysconfdir}/pam.d
​install -m 644 %{SOURCE1} %{buildroot}/%{_sysconfdir}/pam.d/%{name}
​install -m 755 -d %{buildroot}/%{_sysconfdir}/security/console.apps/
​echo "FALLBACK=true" > %{buildroot}/%{_sysconfdir}/security/console.apps/%{name}
​
​install -m 755 -d %{buildroot}/%{_sbindir}
​pushd %{buildroot}/%{_bindir}
​mv eject ../sbin
​ln -s consolehelper eject
​popd

	 %clean
	
						The %clean directive defines instructions on how to clean out the build root. For example:
					
​%clean
​rm -rf %{buildroot}
The %clean directive is deprecated [Draft]

							RPM in Fedora 18 does not require the presence of the %clean directive in the spec file. If the tag is defined, it will be ignored.
						

	 %files
	
						The %files directive contains a list of files in the package to be installed.
						 For example:
					
​%files -f %{name}.lang

	 %changelog
	
						The %changelog directive defines changes in the package.
						 For example:
					
​%changelog
​* Wed Apr 02 2008 John Due <jdoe at example.com> 2.1.5-11
​- Added check if device is hotpluggable
​- Resolves #438610

 ⁠Appendix B. Getting More Information [Draft]

		For more information on RPM packaging, refer to the resources listed below.
	

 ⁠ Installed Documentation
	
				rpm(8) – The manual page for the rpm utility for building, installing, querying, verifying, updating, and erasing individual RPM packages.
			

	
				rpmbuild(8) – The manual page for the rpmbuild utility for building both binary and source RPM packages.
			

	
				rpmlint(1) – The manual page for the rpmlint utility for checking common errors in RPM packages.
			

 ⁠Appendix C. Revision History [Draft]

			Revision History
	Revision 0-0	Thu Aug 25 2011	Petr Kovář
	
						Initial creation of book by publican

				

	

OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/images/dot2.png

OEBPS/Common_Content/images/documentation.png
made with
Publican

OEBPS/Common_Content/images/h1-bg.png

OEBPS/Common_Content/images/26.png

OEBPS/content.opf
 _idp22098448 Packager's Guide The Packager's Guide provides basic information on creating, building, and testing RPM packages, and spec file writing. It also contains a spec file reference. The audience are developers and system administrators who have a basic understanding of software packaging and RPM. Petr Kovář en

OEBPS/Common_Content/images/shine.png

OEBPS/Common_Content/images/shade.png

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/Common_Content/images/image_right.png
DOCUMENTATION

OEBPS/Common_Content/images/red.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/images/28.png

OEBPS/Common_Content/images/3.png

OEBPS/Common_Content/images/34.png

OEBPS/Common_Content/images/image_left.png
fedora>"

OEBPS/Common_Content/images/16.png

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/images/5.png

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/images/bullet_arrowblue.png

OEBPS/Common_Content/images/24.png

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/title_logo.png
fedorqa

OEBPS/Common_Content/images/37.png

OEBPS/Common_Content/images/7.png

OEBPS/Common_Content/images/warning.png

OEBPS/Common_Content/images/logo.png
fedora>"

OEBPS/Common_Content/images/important.png

OEBPS/Common_Content/images/9.png

OEBPS/Common_Content/images/35.png

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/images/19.png

OEBPS/Common_Content/images/17.png

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/Common_Content/images/20.png

OEBPS/Common_Content/images/33.png

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/images/4.png

OEBPS/Common_Content/images/21.png

OEBPS/Common_Content/images/31.png

OEBPS/Common_Content/images/23.png

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/14.png

OEBPS/Common_Content/images/1.png

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/images/25.png

OEBPS/Common_Content/images/38.png

OEBPS/Common_Content/images/bkgrnd_greydots.png

OEBPS/Common_Content/images/8.png

