Fedora 20
Networking Guide

Configuration and Administration of networking for Fedora 20

Edition 1

		[image:]

	

Stephen Wadeley
Red Hat Engineering Content Services
swadeley@redhat.com

Legal Notice

		Copyright © 2014 Red Hat, Inc. and others.
	

		The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		For guidelines on the permitted uses of the Fedora trademarks, refer to https://fedoraproject.org/wiki/Legal:Trademark_guidelines.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		All other trademarks are the property of their respective owners.
	

Abstract

			The Networking Guide documents relevant information regarding the configuration and administration of network interfaces, networks and network services in Fedora 20. It is oriented towards system administrators with a basic understanding of Linux and networking.
		

			This book is based on the Deployment Guide from Red Hat Enterprise Linux 6. The chapters related to networking were taken from the Deployment Guide to form the foundation for this book.
		

 ⁠Preface [Draft]

		The Networking Guide contains information on how to use the networking related features of Fedora 20.
	

		This manual discusses many intermediate topics such as the following:
	
	
				Setting up a network (from establishing an Ethernet connection using NetworkManager to configuring channel bonding interfaces).
			

	
				Configuring DHCP, BIND, and DNS.
			

 ⁠1. Target Audience [Draft]

			The Networking Guide assumes you have a basic understanding of the Fedora operating system. If you need help with the installation of this system, see the Fedora 20 Installation Guide.
		

			This guide is not aimed exclusively at experienced Linux system administrators. The authors of this book have attempted to cater for a wider audience as more and more organizations and users become subscribers to Red Hat, Inc. At the same time we are aware of the need not to allow seemingly trivial information to get in the way of the tasks. Your feedback on how well we have met this goal is welcome.
		

 ⁠2. About This Book [Draft]

			The Networking Guide is based on the networking material in the Red Hat Enterprise Linux 6 Deployment Guide. It also retains the information on DHCP and DNS servers from the Part II, “Servers” [Draft] section. Most of the non-networking related material from the Red Hat Enterprise Linux 6 Deployment Guide guide can now be found in the Fedora 20 System Administrator's Guide except for reference material, such as that found in the appendices of the Deployment Guide. Reference material is now in a separate guide, the Fedora 20 System Administrator's Reference Guide.
		

 ⁠3. What's new in Fedora 20 [Draft]

			Network Teaming has been introduced as an alternative to bonding for link aggregation. It is designed to be easy to maintain, debug and extend. For the user it offers performance and flexibility improvements and should be evaluated for all new installations.
		

			A new command-line tool, nmcli, has been introduced to allow users and scripts to interact with NetworkManager. A simple curses-based user interface for NetworkManager, nmtui, is also available.
		

			A number of improvements have been made to NetworkManager to make it more suitable for use in server applications. In particular, NetworkManager no longer watches for configuration file changes by default, such as those made by editors or deployment tools. It allows administrators to make it aware of external changes through the nmcli connection reload command. Changes made through NetworkManager's D-Bus API or with nmcli are still effective immediately.
		

			Not included in this guide, but of interest to network administrators, is the new Open Linux Management Infrastructure or OpenLMI project. This is an implementation of open industry standards for remote system management, which includes an agent for networking. See the Fedora 20 System Administrator's Guide for information on the OpenLMI Networking Provider.
		

 ⁠4. How to Read this Book [Draft]

			This manual is divided into the following main categories:
		
	Part I, “Networking” [Draft]
	
						This part describes how to configure the network on Fedora.
					

						Chapter 1, Introduction to Fedora Networking [Draft] explains the default networking service, NetworkManager, and the various graphical and command-line tools that can be used to interact with NetworkManager. These include, an associated command-line configuration tool, nmcli, and two graphical user interface tools, control-center and nm-connection-editor. Read this chapter to learn more about the many ways the NetworkManager daemon can be used.
					

						Chapter 2, Configure Networking [Draft] covers static and dynamic interface settings, selecting network configuration methods, using NetworkManager with graphical and command-line user interfaces. Read this chapter to learn about configuring network connections.
					

						Chapter 3, Configure Host Names [Draft] covers static, pretty, and transient host names and their configuration using hostnamectl. Read this chapter to learn more about configuring host names on local and remote systems.
					

						Chapter 4, Configure Network Bonding [Draft] covers the configuring and use of bonded network connections. Read this chapter to learn about the configuring of network bonds using graphical and command-line user interfaces.
					

						Chapter 5, Configure Network Teaming [Draft] covers the configuring and use of teamed network connections. Read this chapter to learn about the configuring of network teams using graphical and command-line user interfaces.
					

						Chapter 6, Configure Network Bridging [Draft] covers the configuring and use of network bridges. Read this chapter to learn about the configuring of network bridges using graphical and command-line user interfaces.
					

						Chapter 7, Configure 802.1Q VLAN tagging [Draft] covers the configuring and use of virtual private networks, VLANs, according to the 802.1Q standard. Read this chapter to learn about the configuring of VLANs using graphical and command-line user interfaces.
					

						Chapter 8, Consistent Network Device Naming [Draft] covers consistent network device naming for network interfaces, a feature that changes the name of network interfaces on a system in order to make locating and differentiating the interfaces easier. Read this chapter to learn about this feature and how to enable or disable it.
					

	Part II, “Servers” [Draft]
	
						This part discusses how to set up servers normally required for networking.
					

						Chapter 9, DHCP Servers [Draft] covers the installation of a Dynamic Host Configuration Protocol (DHCP) server and client. Read this chapter if you need to configure DHCP on your system.
					

						Chapter 10, DNS Servers [Draft] covers the Domain Name System (DNS), explains how to install, configure, run, and administer the BIND DNS server. Read this chapter if you need to configure a DNS server on your system.
					

			For topics related to network configuration but not listed above, such as configuring GRUB to enable serial links and the use of virtual console terminals, see the Fedora 20 System Administrator's Guide.
		

			For topics related to servers but not listed above, such as configuring Network Time Protocol (NTP) and Precision Time Protocol (PTP), see the Fedora 20 System Administrator's Guide.
		

 ⁠5. Document Conventions [Draft]

		This manual uses several conventions to highlight certain words and phrases and draw attention to specific pieces of information.
	

 ⁠5.1. Typographic Conventions [Draft]

			Four typographic conventions are used to call attention to specific words and phrases. These conventions, and the circumstances they apply to, are as follows.
		

			Mono-spaced Bold
		

			Used to highlight system input, including shell commands, file names and paths. Also used to highlight keys and key combinations. For example:
		

				To see the contents of the file my_next_bestselling_novel in your current working directory, enter the cat my_next_bestselling_novel command at the shell prompt and press Enter to execute the command.
			

			The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all distinguishable thanks to context.
		

			Key combinations can be distinguished from an individual key by the plus sign that connects each part of a key combination. For example:
		

				Press Enter to execute the command.
			

				Press Ctrl+Alt+F2 to switch to a virtual terminal.
			

			The first example highlights a particular key to press. The second example highlights a key combination: a set of three keys pressed simultaneously.
		

			If source code is discussed, class names, methods, functions, variable names and returned values mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:
		

				File-related classes include filesystem for file systems, file for files, and dir for directories. Each class has its own associated set of permissions.
			

			Proportional Bold
		

			This denotes words or phrases encountered on a system, including application names; dialog-box text; labeled buttons; check-box and radio-button labels; menu titles and submenu titles. For example:
		

				Choose System → Preferences → Mouse from the main menu bar to launch Mouse Preferences. In the Buttons tab, select the Left-handed mouse check box and click Close to switch the primary mouse button from the left to the right (making the mouse suitable for use in the left hand).
			

				To insert a special character into a gedit file, choose Applications → Accessories → Character Map from the main menu bar. Next, choose Search → Find… from the Character Map menu bar, type the name of the character in the Search field and click Next. The character you sought will be highlighted in the Character Table. Double-click this highlighted character to place it in the Text to copy field and then click the Copy button. Now switch back to your document and choose Edit → Paste from the gedit menu bar.
			

			The above text includes application names; system-wide menu names and items; application-specific menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all distinguishable by context.
		

			Mono-spaced Bold Italic or Proportional Bold Italic
		

			Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable text. Italics denotes text you do not input literally or displayed text that changes depending on circumstance. For example:
		

				To connect to a remote machine using ssh, type ssh username@domain.name at a shell prompt. If the remote machine is example.com and your username on that machine is john, type ssh john@example.com.
			

				The mount -o remount file-system command remounts the named file system. For example, to remount the /home file system, the command is mount -o remount /home.
			

				To see the version of a currently installed package, use the rpm -q package command. It will return a result as follows: package-version-release.
			

			Note the words in bold italics above: username, domain.name, file-system, package, version and release. Each word is a placeholder, either for text you enter when issuing a command or for text displayed by the system.
		

			Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and important term. For example:
		

				Publican is a DocBook publishing system.
			

 ⁠5.2. Pull-quote Conventions [Draft]

			Terminal output and source code listings are set off visually from the surrounding text.
		

			Output sent to a terminal is set in mono-spaced roman and presented thus:
		
books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

			Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:
		
​package org.jboss.book.jca.ex1;
​
​import javax.naming.InitialContext;
​
​public class ExClient
​{
​ public static void main(String args[])
​ throws Exception
​ {
​ InitialContext iniCtx = new InitialContext();
​ Object ref = iniCtx.lookup("EchoBean");
​ EchoHome home = (EchoHome) ref;
​ Echo echo = home.create();
​
​ System.out.println("Created Echo");
​
​ System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
​ }
​}

 ⁠5.3. Notes and Warnings [Draft]

			Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.
		
Note [Draft]

				Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should have no negative consequences, but you might miss out on a trick that makes your life easier.
			

Important [Draft]

				Important boxes detail things that are easily missed: configuration changes that only apply to the current session, or services that need restarting before an update will apply. Ignoring a box labeled “Important” will not cause data loss but may cause irritation and frustration.
			

Warning [Draft]

				Warnings should not be ignored. Ignoring warnings will most likely cause data loss.
			

 ⁠6. Feedback [Draft]

		If you find a typographical error in this manual, or if you have thought of a way to make this manual better, we would love to hear from you! Please submit a report in Bugzilla against the product Fedora Documentation.
	

		When submitting a bug report, be sure to provide the following information:
	
	
				Manual's identifier: networking-guide
			

	
				Version number: 20
			

		If you have a suggestion for improving the documentation, try to be as specific as possible when describing it. If you have found an error, please include the section number and some of the surrounding text so we can find it easily.
	

 ⁠7. Acknowledgments [Draft]

			Certain portions of this text first appeared in the Red Hat Enterprise Linux 6 Deployment Guide, copyright © 2014 Red Hat, Inc., available at https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html.
		

 ⁠Part I. Networking [Draft]

				This part describes how to configure the network on Fedora.
			

 ⁠Chapter 1. Introduction to Fedora Networking [Draft]

 ⁠1.1. How this Book is Structured [Draft]

			All new material in this book has been written and arranged in such a way as to clearly separate introductory material, such as explanations of concepts and use cases, from configuration tasks. The authors hope that you can quickly find configuration instructions you need, while still providing some relevant explanations and conceptual material to help you understand and decide on the appropriate tasks relevant to your needs. Where material has been reused from the Red Hat Enterprise Linux 6 Deployment Guide, it has been reviewed and changed, where possible, to fit this idea of separating concepts from tasks.
		

			The material is grouped according to the goal rather than the method. Instructions on how to achieve a specific task using different methods are grouped together. This is intended to make it easier for you to find the information on how to achieve a particular task or goal, and at the same time allow you to quickly see the different methods available.
		

			In each chapter, the configuration methods will be presented in the following order: A graphical user interface (GUI) method, such as the use of nm-connection-editor or control-network to direct NetworkManager, then NetworkManager's command-line tool nmcli, and then finally methods using the command line and configuration files. The command line can be used to issue commands and to compose or edit configuration files, therefore the use of the ip commands and configuration files will be documented together.
		

 ⁠1.2. Introduction to NetworkManager [Draft]

			As of Fedora 20, the default networking service is provided by NetworkManager, which is a dynamic network control and configuration daemon that attempts to keep network devices and connections up and active when they are available. The traditional ifcfg type configuration files are still supported. See Section 1.6, “NetworkManager and the Network Scripts” [Draft] for more information.
		

 ⁠Table 1.1. A Summary of Networking Tools and Applications [Draft]
	Application or Tool	Description
	NetworkManager	The default networking daemon
	nmtui	A simple curses-based text user interface (TUI) for NetworkManager
	nmcli	A command-line tool provided to allow users and scripts to interact with NetworkManager
	control-center	A graphical user interface tool provided by the GNOME Shell
	nm-connection-editor	A GTK+ 3 application available for certain tasks not yet handled by control-center

			NetworkManager can be used with the following types of connections: Ethernet, VLANs, Bridges, Bonds, Teams, Wi-Fi, mobile broadband (such as cellular 3G), and IP-over-InfiniBand. For these connection types, NetworkManager can configure network aliases, IP addresses, static routes, DNS information, and VPN connections, as well as many connection-specific parameters. Finally, NetworkManager provides an API via D-Bus which allows applications to query and control network configuration and state.
		

 ⁠1.3. Installing NetworkManager [Draft]

			NetworkManager is installed by default on Fedora. If necessary, to ensure that it is, run the following command as the root user:
		
~]# yum install NetworkManager

			For information on user privileges and gaining privileges, see the Fedora 20 System Administrator's Guide.
		

 ⁠1.3.1. The NetworkManager Daemon [Draft]

				The NetworkManager daemon runs with root privileges and is, by default, configured to start up at boot time. You can determine whether the NetworkManager daemon is running by entering this command:
			
~]$ systemctl status NetworkManager
NetworkManager.service - Network Manager
 Loaded: loaded (/lib/systemd/system/NetworkManager.service; enabled)
 Active: active (running) since Fri, 08 Mar 2013 12:50:04 +0100; 3 days ago

				The systemctl status command will report NetworkManager as Active: inactive (dead) if the NetworkManager service is not running. To start it for the current session run the following command as the root user:
			
~]# systemctl start NetworkManager

				Run the systemctl enable command to ensure that NetworkManager starts up every time the system boots:
			
~]# systemctl enable NetworkManager

				For more information on starting, stopping and managing services, see the Fedora 20 System Administrator's Guide.
			

 ⁠1.3.2. Interacting with NetworkManager [Draft]

				Users do not interact with the NetworkManager system service directly. Instead, users perform network configuration tasks via graphical and command-line user interface tools. The following tools are available in Fedora:
			

					
							A graphical user interface tool called control-center, provided by GNOME, is available for desktop users. It incorporates a Network settings tool. It start it, press the Super key to enter the Activities Overview, type control network and then press Enter.
						

	
							A command-line tool, nmcli, is provided to allow users and scripts to interact with NetworkManager. Note that nmcli can be used on GUI-less systems like servers to control all aspects of NetworkManager. It is on an equal footing with the GUI tools.
						

	
							The GNOME Shell also provides a network icon in its Notification Area representing network connection states as reported by NetworkManager. The icon has multiple states that serve as visual indicators for the type of connection you are currently using.
						

	
							A graphical user interface tool called control-center, provided by the GNOME Shell, is available for desktop users. It incorporates a Network settings tool. To start it, press the Super key to enter the Activities Overview, type control network and then press Enter. The Super key appears in a variety of guises, depending on the keyboard and other hardware, but often as either the Windows or Command key, and typically to the left of the Spacebar.
						

	
							A graphical user interface tool, nm-connection-editor, is available for certain tasks not yet handled by control-center. To start it, press the Super key to enter the Activities Overview, type network connections or nm-connection-editor and then press Enter.
						

			

 ⁠1.4. Network Configuration Using the Command Line Interface (CLI) [Draft]

		

			The commands for the ip utility, sometimes referred to as iproute2 after the upstream package name, are documented in the man ip(8) page. The package name in Fedora is iproute. If necessary, you can check that the ip utility is installed by checking its version number as follows:
		
~]$ ip -V
ip utility, iproute2-ss130716

			The ip commands can be used to add and remove addresses and routes to interfaces in parallel with NetworkManager, which will preserve them and recognize them in nmcli, nmtui, control-center, and the D-Bus API.
		
Note [Draft]

				Note that ip commands given on the command line will not persist after a system restart.
			

			Examples of using the command line and configuration files for each task are included after explaining the use of one of the graphical user interfaces to NetworkManager, namely, control-center and nm-connection-editor.
		

 ⁠1.5. Network Configuration Using NetworkManager's CLI (nmcli) [Draft]

		

			The NetworkManager command-line tool, nmcli, provides a command line way to configure networking by controlling NetworkManager. It is installed, along with NetworkManager, by default. If required, for details on how to verify that NetworkManager is running, see Section 1.3.1, “The NetworkManager Daemon” [Draft].
		

			Examples of using the nmcli tool for each task will be included where possible, after explaining the use of graphical user interfaces and other command line methods. See Section 2.4, “Using the NetworkManager Command Line Tool, nmcli” [Draft] for an introduction to nmcli.
		

 ⁠1.6. NetworkManager and the Network Scripts [Draft]

			In previous Red Hat Enterprise Linux releases, the default way to configure networking was using network scripts. The term network scripts is commonly used for the script /etc/init.d/network and any other installed scripts it calls. The user supplied files are typically viewed as configuration, but can also be interpreted as an amendment to the scripts.
		

			Although NetworkManager provides the default networking service, Red Hat developers have worked hard to ensure that scripts and NetworkManager cooperate with each other. Administrators who are used to the scripts can certainly continue to use them. We expect both systems to be able to run in parallel and work well together. It is expected that most user shell scripts from previous releases will still work. Red Hat recommends that you test them first.
		

 ⁠Running Network Script

			Run the script only with the systemctl utility which will clear any existing environment variables and ensure clean execution. The command takes the following form: systemctl start|stop|restart|status network

		

			Do not run any service by calling /etc/init.d/servicename start|stop|restart|status directly.
		

			Note that in Red Hat Enterprise Linux 7, NetworkManager is started first, and /etc/init.d/network checks with NetworkManager to avoid tampering with NetworkManager's connections. NetworkManager is intended to be the primary application using sysconfig configuration files and /etc/init.d/network is intended to be secondary, playing a fallback role.
		

			The /etc/init.d/network script is not event-driven, it runs either:
				
						manually (by one of the systemctl commands start|stop|restart network),
					

	
						on boot and shutdown if the network service is enabled (as a result of the command systemctl enable network).
					

			 It is a manual process and does not react to events that happen after boot. Users can also call the scripts ifup and ifdown manually.
		

			
		

 ⁠Custom Commands and the Network Scripts

			Custom commands in the scripts /sbin/ifup-local, ifdown-pre-local, and ifdown-local are only executed when those devices are controlled by the /etc/init.d/network service. If you modified the initscripts themselves (for example, /etc/sysconfig/network-scripts/ifup-eth) then those changes would be overwritten by an initscripts package update. Therefore it is recommend that you avoid modifying the initscripts directly and make use of the /sbin/if*local scripts, so that your custom changes will survive package updates. The initscripts just check for the presence of the relevant /sbin/if*local and run them if they exit. The initscripts do not place anything in the /sbin/if*local scripts, nor does the initscripts RPM (or any package) own or modify those files.
		

			There are ways to perform custom tasks when network connections go up and down, both with the old network scripts and with NetworkManager. When NetworkManager is enabled, the ifup and ifdown script will ask NetworkManager whether NetworkManager manages the interface in question, which is found from the “DEVICE=” line in the ifcfg file. If NetworkManager does manage that device, and the device is not already connected, then ifup will ask NetworkManager to start the connection.
				
						If the device is managed by NetworkManager and it is already connected, nothing is done.
					

	
						If the device is not managed by NetworkManager, then the scripts will start the connection using the older, non-NetworkManager mechanisms that they have used since the time before NetworkManager existed.
					

		

			If you are calling "ifdown" and the device is managed by NetworkManager, then ifdown will ask NetworkManager to terminate the connection.
		

			The scripts dynamically check NetworkManager, so if NetworkManager is not running, the scripts will fall back to the old, pre-NetworkManager script-based mechanisms.
		

 ⁠1.7. Network Configuration Using sysconfig Files [Draft]

			The /etc/sysconfig/ directory is a location for configuration files and scripts. Most network configuration information is stored there, with the exception of VPN, mobile broadband and PPPoE configuration, which are stored in /etc/NetworkManager/ subdirectories. Interface specific information for example, is stored in ifcfg files in the /etc/sysconfig/network-scripts/ directory.
		

			The file /etc/sysconfig/network is for global settings. Information for VPNs, mobile broadband and PPPoE connections is stored in /etc/NetworkManager/system-connections/.
		

			In Fedora, when you edit an ifcfg file, NetworkManager is not automatically aware of the change and has to be prompted to notice the change. If you use one of the tools to update NetworkManager profile settings, then NetworkManager does not implement those changes until you reconnect using that profile. For example, if configuration files have been changed using an editor, NetworkManager must be told to read the configuration files again. To do that, issue the following command as root:
~]# nmcli connection reload

			 The above command reads all connection profiles. Alternatively, to reload only one changed file, ifcfg-ifname, issue a command as follows:
~]# nmcli con load /etc/sysconfig/network-scripts/ifcfg-ifname

			 The command accepts multiple file names. These commands require root privileges. For more information on user privileges and gaining privileges, see the Fedora 20 System Administrator's Guide and the su(1) and sudo(8) man pages.
		

			Changes made using tools such as nmcli do not require a reload but do require the associated interface to be put down and then up again. That can be done by using commands in the following format: nmcli dev disconnect interface-name
 Followed by: nmcli con up interface-name

		

			NetworkManager does not trigger any of the network scripts, though the network scripts will try to trigger NetworkManager if it is running when ifup commands are used. See Section 1.6, “NetworkManager and the Network Scripts” [Draft] for an explanation of the network scripts.
		

			The ifup script is a generic script which does a few things and then calls interface-specific scripts like ifup-ethX, ifup-wireless, ifup-ppp, and so on. When a user runs ifup eth0 manually, the following occurs:
				
						ifup looks for a file called /etc/sysconfig/network-scripts/ifcfg-eth0;
					

	
						if the ifcfg file exists, ifup looks for the TYPE key in that file to determine which type-specific script to call;
					

	
						ifup calls ifup-wireless or ifup-eth or ifup-XXX based on TYPE;
					

	
						the type-specific scripts do type-specific setup;
					

	
						and then the type-specific scripts let common functions perform IP-related tasks like DHCP or static setup.
					

		

			On bootup, /etc/init.d/network reads through all the ifcfg files and for each one that has ONBOOT=yes, it checks whether NetworkManager is already starting the DEVICE from that ifcfg file. If NetworkManager is starting that device or has already started it, nothing more is done for that file, and the next ONBOOT=yes file is checked. If NetworkManager is not yet starting that device, the initscripts will continue with their traditional behavior and call ifup for that ifcfg file.
		

			The end result is that any ifcfg file that has ONBOOT=yes is expected to be started on system bootup, either by NetworkManager or by the initscripts. This ensures that some legacy network types which NetworkManager does not handle (such as ISDN or analog dialup modems) as well as any new application not yet supported by NetworkManager are still correctly started by the initscripts even though NetworkManager is unable to handle them.
		
Note [Draft]

				It is recommended not to store backup ifcfg files in the same location as the live ones. The script literally does ifcfg-* with an exclude only for these extensions: .old, .orig, .rpmnew, .rpmorig, and .rpmsave. The best way is not to store backup files anywhere within the /etc/ directory.
			

 ⁠1.8. Additional Resources [Draft]

			The following sources of information provide additional resources regarding networking for Fedora.
		

 ⁠1.8.1. Installed Documentation [Draft]

	
						man(1) man page — Describes man pages and how to find them.
					

	
						NetworkManager(8) man page — Describes the network management daemon.
					

	
						NetworkManager.conf(5) man page — Describes the NetworkManager configuration file.
					

	
						/usr/share/doc/initscripts-version/sysconfig.txt — Describes configuration files and their directives.
					

 ⁠Chapter 2. Configure Networking [Draft]

 ⁠2.1. Static and Dynamic Interface Settings [Draft]

			When to use static addressing and when to use dynamic addressing? These decisions are subjective, they depend on your accessed needs, your specific requirements. Having a policy, documenting it, and applying it consistently are usually more important than the specific decisions you make. In a traditional company LAN, this is an easier decision to make as you typically have fewer servers than other hosts. Provisioning and installation tools make providing static configurations to new hosts easy and using such tools will change your work flow and requirements. The following two sections are intended to provide guidance to those who have not already been through this decision-making process. For more information on automated configuration and management, see the OpenLMI section in the System Administrators Guide. The System Installation Guide documents the use of kickstart which can also be used for automating the assignment of network settings.
		

 ⁠2.1.1. When to Use Static Network Interface Settings [Draft]

			

				Use static IP addressing on those servers and devices whose network availability you want to ensure when automatic assignment methods, such as DHCP, fail. DHCP, DNS, and authentication servers are typical examples. Interfaces for out-of-band management devices are also worth configuring with static settings as these devices are supposed to work, as far as is possible, independently of other network infrastructure.
			

				For hosts which are not considered vital, but for which static IP addressing is still considered desirable, use an automated provisioning method when possible. For example, DHCP servers can be configured to provide the same IP address to the same host every time. This method could be used for communal printers for example.
			

				All the configuration tools listed in Section 2.1.3, “Selecting Network Configuration Methods” [Draft] allow assigning static IP addresses manually. The nmcli tool is also suitable for use with scripted assignment of network configuration.
			

 ⁠2.1.2. When to Use Dynamic Interface Settings [Draft]

			

				Enable and use dynamic assignment of IP addresses and other network information whenever there is no compelling reason not to. The time saved in planning and documenting manual settings can be better spent elsewhere. The dynamic host control protocol (DHCP) is a traditional method of dynamically assigning network configurations to hosts. See Section 9.1, “Why Use DHCP?” [Draft] for more information on this subject.
			

				Note that NetworkManager will start the DHCP client, dhclient, automatically.
			

 ⁠2.1.3. Selecting Network Configuration Methods [Draft]

	
						To configure a network using graphical user interface tools, proceed to Section 2.2, “Using NetworkManager with the GNOME Graphical User Interface” [Draft]
					

	
						To configure a network interface manually, see Section 2.3, “Using the Command Line Interface (CLI)” [Draft].
					

	
						To configure an interface using NetworkManager's command-line tool, nmcli, proceed to Section 2.4, “Using the NetworkManager Command Line Tool, nmcli” [Draft]
					

 ⁠2.2. Using NetworkManager with the GNOME Graphical User Interface [Draft]

			As of Fedora 20, NetworkManager does not have its own graphical user interface (GUI). The Network settings configuration tool is provided as part of the new GNOME control-center GUI. The old nm-connection-editor GUI is still available for certain tasks.
		

 ⁠2.2.1. Connecting to a Network Using a GUI [Draft]

				Access the Network settings window of the control-center application as follow:
			
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears. Proceed to Section 2.2.2, “Configuring New and Editing Existing Connections” [Draft]
					

 ⁠2.2.2. Configuring New and Editing Existing Connections [Draft]

				The Network settings window shows the connection status, its type and interface, its IP address and routing details, and so on.
			

 ⁠
 ⁠[image: Configure Networks Using the Network Settings Window]

Figure 2.1. Configure Networks Using the Network Settings Window [Draft]

				The Network settings window has a menu on the left-hand side showing the available network devices or interfaces. This includes software interfaces such as for VLANs, bridges, bonds, and teams. On the right-hand side, the connection profiles are shown for the selected network device or interface. A profile is a named collection of settings that can be applied to an interface. Below that is a plus and a minus button for adding and deleting new network connections, and on the right a gear wheel icon will appear for editing the connection details of the selected network device or VPN connection. To add a new connection, click the plus symbol to open the Add Network Connection window and proceed to Section 2.2.2, “Configuring a New Connection” [Draft].
			

 ⁠Editing an Existing Connection

				Clicking on the gear wheel icon of an existing connection profile in the Network settings window opens the Network details window, from where you can perform most network configuration tasks such as IP addressing, DNS, and routing configuration.
			

 ⁠
 ⁠[image: Configure Networks Using the Network Connection Details Window]

Figure 2.2. Configure Networks Using the Network Connection Details Window [Draft]

 ⁠Configuring a New Connection

				In the Network settings window, click the plus sign below the menu to open the Add Network Connection window. This displays a list of connection types that can be added.
			

				Then, to configure:
			
	
						VPN connections, click the VPN entry and proceed to Section 2.2.7, “Establishing a VPN Connection” [Draft];
					

	
						Bond connections, click the Bond entry and proceed to Section 4.2.1, “Establishing a Bond Connection” [Draft];
					

	
						Bridge connections, click the Bridge entry and proceed to Section 6.1.1, “Establishing a Bridge Connection” [Draft];
					

	
						VLAN connections, click the VLAN entry and proceed to Section 7.1.1, “Establishing a VLAN Connection” [Draft];or,
					

	
						Team connections, click the Team entry and proceed to Section 5.9, “Creating a Network Team Using a GUI” [Draft].
					

 ⁠2.2.3. Connecting to a Network Automatically [Draft]

				For any connection type you add or configure, you can choose whether you want NetworkManager to try to connect to that network automatically when it is available.
			

 ⁠Procedure 2.1. Configuring NetworkManager to Connect to a Network Automatically When Detected [Draft]
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Select the network interface from the left-hand-side menu.
					

	
						Click on the gear wheel icon of a connection profile on the right-hand side menu. If you have only one profile associated with the selected interface the gear wheel icon will be in the lower right-hand-side corner. The Network details window appears.
					

	
						Select the Identity menu entry on the left. The Network window changes to the identity view.
					

	
						Select Connect automatically to cause NetworkManager to auto-connect to the connection whenever NetworkManager detects that it is available. Clear the check box if you do not want NetworkManager to connect automatically. If the check box is clear, you will have to select that connection manually in the network applet menu to cause it to connect.
					

 ⁠2.2.4. System-wide and Private Connection Profiles [Draft]

				NetworkManager stores all connection profiles. A profile is a named collection of settings that can be applied to an interface. NetworkManager stores these connection profiles for system-wide use (system connections), as well as all user connection profiles. Access to the connection profiles is controlled by permissions which are stored by NetworkManager. See the nm-settings(5) man page for more information on the connection settings permissions property. The permissions correspond to the USERS directive in the ifcfg files. If the USERS directive is not present, the network profile will be available to all users. As an example, the following command in an ifcfg file will make the connection available only to the users listed: USERS="joe bob alice"
 This can also be set using graphical user interface tools. In nm-connection-editor, there is the corresponding All users may connect to this network check box on the General tab, and in the GNOME control-center Network settings Identity window, there is the Make available to other users check box.
			

				NetworkManager's default policy is to allow all users to create and modify system-wide connections. Profiles that should be available at boot time cannot be private because they will not be visible until the user logs in. For example, if user user creates a connection profile user-em2 with the Connect Automatically check box selected but with the Make available to other users not selected, then the connection will not be available at boot time.
			

				To restrict connections and networking, there are two options which can be used alone or in combination:
					
							Clear the Make available to other users check box, which changes the connection to be modifiable and usable only by the user doing the changing.
						

	
							Use the polkit framework to restrict permissions of general network operations on a per-user basis.
						

				 The combination of these two options provides fine-grained security and control over networking. See the polkit(8) man page for more information on polkit.
			

				Note that VPN connections are always created as private-per-user, since they are assumed to be more private than a Wi-Fi or Ethernet connection.
			

 ⁠Procedure 2.2. Changing a Connection to Be User-specific Instead of System-Wide, or Vice Versa [Draft]

					Depending on the system's policy, you may need root privileges on the system in order to change whether a connection is user-specific or system-wide.
				
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Select the network interface from the left-hand-side menu.
					

	
						Click on the gear wheel icon of a connection profile on the right-hand side menu. If you have only one profile associated with the selected interface the gear wheel icon will be in the lower right-hand-side corner. The Network details window appears.
					

	
						Select the Identity menu entry on the left. The Network window changes to the identity view.
					

	
						Select the Make available to other users check box to cause NetworkManager to make the connection available system-wide. Depending on system policy, you may then be prompted for the root password by the PolicyKit application. If so, enter the root password to finalize the change.
					

						Conversely, clear the Make available to other users check box to make the connection user-specific.
					

 ⁠2.2.5. Configuring a Wired (Ethernet) Connection [Draft]

				To configure a wired network connection, press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
			

				Select the Wired network interface from the left-hand-side menu if it is not already highlighted.
			

				The system creates and configures a single wired connection profile called Wired by default. A profile is a named collection of settings that can be applied to an interface. More than one profile can be created for an interface and applied as needed. The default profile cannot be deleted but its settings can be changed. You can edit the default Wired profile by clicking the gear wheel icon. You can create a new wired connection profile by clicking the Add Profile button. Connection profiles associated with a selected interface are shown on the right-hand side menu.
			

				When you add a new connection by clicking the Add Profile button, NetworkManager creates a new configuration file for that connection and then opens the same dialog that is used for editing an existing connection. The difference between these dialogs is that an existing connection profile has a Details and Reset menu entry. In effect, you are always editing a connection profile; the difference only lies in whether that connection previously existed or was just created by NetworkManager when you clicked Add Profile.
			

 ⁠Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

				Many settings in the Editing dialog are common to all connection types, see the Identity view if using the GNOME tool or the General tab if using nm-connection-editor:
			
	
						Name — Enter a descriptive name for your network connection. This name will be used to list this connection in the menu of the Network window.
					

	
						MAC Address — Select the MAC address of the interface this profile must be applied to.
					

	
						Cloned Address — If required, enter a different MAC address to use.
					

	
						MTU — If required, enter a specific maximum transmission unit (MTU) to use. The MTU value represents the size in bytes of the largest packet that the link-layer will transmit. This value defaults to 1500 and does not generally need to be specified or changed.
					

	
						Firewall Zone — If required, select a different firewall zone to apply. See the Red Hat Enterprise Linux 7 Security Guide for more information on firewall zones.
					

	
						Connect Automatically — Select this box if you want NetworkManager to auto-connect to this connection when it is available. See Section 2.2.3, “Connecting to a Network Automatically” [Draft] for more information.
					

	
						Make available to other users — Select this box to create a connection available to all users on the system. Changing this setting may require root privileges. See Section 2.2.4, “System-wide and Private Connection Profiles” [Draft] for details.
					

	
						Automatically connect to VPN when using this connection — Select this box if you want NetworkManager to auto-connect to the selected VPN connection when this connection profile is connected. Select the VPN from the drop-down menu.
					

 ⁠Saving Your New (or Modified) Connection and Making Further Configurations

				Once you have finished editing your wired connection, click the Apply button to save your customized configuration. If the profile was in use while being edited, power cycle the connection to make NetworkManager apply the changes. If the profile is OFF, set it to ON. See Section 2.2.1, “Connecting to a Network Using a GUI” [Draft] for information on using your new or altered connection.
			

				You can further configure an existing connection by selecting it in the Network window and clicking the gear wheel icon to return to the editing dialog.
			

				Then, to configure:
			
	
						port-based Network Access Control (PNAC), click the 802.1X Security tab and proceed to Section 2.2.10.1, “Configuring 802.1X Security” [Draft];
					

	
						IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 2.2.10.4, “Configuring IPv4 Settings” [Draft]; or,
					

	
						IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 2.2.10.5, “Configuring IPv6 Settings” [Draft].
					

 ⁠2.2.6. Configuring a Wi-Fi Connection [Draft]

				This section explains how to use NetworkManager to configure a Wi-Fi (also known as wireless or 802.11a/b/g/n) connection to an Access Point.
			

				To configure a mobile broadband (such as 3G) connection, see Section 2.2.8, “Establishing a Mobile Broadband Connection” [Draft].
			

 ⁠Quickly Connecting to an Available Access Point

				The easiest way to connect to an available access point is to click on the network connection icon to activate the Notification Area applet, locate the Service Set Identifier (SSID) of the access point in the list of Wi-Fi networks, and click on it. A padlock symbol indicates the access point requires authentication. If the access point is secured, a dialog prompts you for an authentication key or password.
			

				NetworkManager tries to auto-detect the type of security used by the access point. If there are multiple possibilities, NetworkManager guesses the security type and presents it in the Wi-Fi security drop-down menu. To see if there are multiple choices, click the Wi-Fi security drop-down menu and select the type of security the access point is using. If you are unsure, try connecting to each type in turn. Finally, enter the key or passphrase in the Password field. Certain password types, such as a 40-bit WEP or 128-bit WPA key, are invalid unless they are of a requisite length. The Connect button will remain inactive until you enter a key of the length required for the selected security type. To learn more about wireless security, see Section 2.2.10.2, “Configuring Wi-Fi Security” [Draft].
			

				If NetworkManager connects to the access point successfully, the Notification Area applet icon will change into a graphical indicator of the wireless connection's signal strength.
			

				You can also edit the settings for one of these auto-created access point connections just as if you had added it yourself. The Wi-Fi page of the Network window has a History button. Clicking this reveals a list of all the connections you have ever tried to connect to. See Section 2.2.6, “Editing a Connection, or Creating a Completely New One” [Draft]
			

 ⁠Connecting to a Hidden Wi-Fi Network

				All access points have a Service Set Identifier (SSID) to identify them. However, an access point may be configured not to broadcast its SSID, in which case it is hidden, and will not show up in NetworkManager's list of Available networks. You can still connect to a wireless access point that is hiding its SSID as long as you know its SSID, authentication method, and secrets.
			

				To connect to a hidden wireless network, press the Super key to enter the Activities Overview, type control network and then press Enter. The Network window appears. Select Wi-Fi from the menu and then select Connect to Hidden Network to cause a dialog to appear. If you have connected to the hidden network before, use the Connection dropdown to select it, and click Connect. If you have not, leave the Connection dropdown as New, enter the SSID of the hidden network, select its Wi-Fi security method, enter the correct authentication secrets, and click Connect.
			

				For more information on wireless security settings, see Section 2.2.10.2, “Configuring Wi-Fi Security” [Draft].
			

 ⁠Editing a Connection, or Creating a Completely New One

				You can edit an existing connection that you have tried or succeeded in connecting to in the past by opening the Wi-Fi page of the Network dialog and selecting the gear wheel icon to the right of the Wi-Fi connection name. If the network is not currently in range, click History to display past connections. When you click the gear wheel icon the editing connection dialog appears. The Details window shows the connection details.
			

				To configure a new connection whose SSID is in range, first attempt to connect to it by opening the Network window, selecting the Wi-Fi menu entry, and clicking the connection name (by default, the same as the SSID). If the SSID is not in range, see Section 2.2.6, “Connecting to a Hidden Wi-Fi Network” [Draft]. If the SSID is in range, the procedure is as follows:
			
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Select the Wi-Fi menu entry.
					

	
						Click the Wi-Fi connection profile on the right-hand side menu you want to connect to. A padlock symbol indicates a key or password is required.
					

	
						If requested, enter the authentication details.
					

 ⁠Configuring the SSID, Auto-Connect Behavior, and Availability Settings

				To edit a Wi-Fi connection's settings, select Wi-Fi in the Network page and then select the gear wheel icon to the right of the Wi-Fi connection name. Select Identity. The following settings are available:
			
	 SSID
	
							The Service Set Identifier (SSID) of the access point (AP).
						

	 BSSID
	
							The Basic Service Set Identifier (BSSID) is the MAC address, also known as a hardware address, of the specific wireless access point you are connecting to when in Infrastructure mode. This field is blank by default, and you are able to connect to a wireless access point by SSID without having to specify its BSSID. If the BSSID is specified, it will force the system to associate to a specific access point only.
						

							For ad-hoc networks, the BSSID is generated randomly by the mac80211 subsystem when the ad-hoc network is created. It is not displayed by NetworkManager
						

	 MAC address
	
							Like an Ethernet Network Interface Card (NIC), a wireless adapter has a unique MAC address (Media Access Control; also known as a hardware address) that identifies it to the system. Running the ip addr command will show the MAC address associated with each interface. For example, in the following ip addr output, the MAC address for the wlan0 interface (which is 00:1c:bf:02:f8:70) immediately follows the link/ether keyword:
						
~]# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 52:54:00:26:9e:f1 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.251/24 brd 192.168.122.255 scope global eth0
 inet6 fe80::5054:ff:fe26:9ef1/64 scope link
 valid_lft forever preferred_lft forever
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen 1000
 link/ether 00:1c:bf:02:f8:70 brd ff:ff:ff:ff:ff:ff
 inet 10.200.130.67/24 brd 10.200.130.255 scope global wlan0
 inet6 fe80::21c:bfff:fe02:f870/64 scope link
 valid_lft forever preferred_lft forever

							A single system could have one or more wireless network adapters connected to it. The MAC address field therefore allows you to associate a specific wireless adapter with a specific connection (or connections). As mentioned, you can determine the MAC address using the ip addr command, and then copy and paste that value into the MAC address text-entry field.
						

	 Cloned Address
	
							A cloned MAC address to use in place of the real hardware address.
						

				The following settings are common to all connection profiles:
			
	
						Connect automatically — Select this box if you want NetworkManager to auto-connect to this connection when it is available. See Section 2.2.3, “Connecting to a Network Automatically” [Draft] for more information.
					

	
						Make available to other users — Select this box to create a connection available to all users on the system. Changing this setting may require root privileges. See Section 2.2.4, “System-wide and Private Connection Profiles” [Draft] for details.
					

 ⁠Saving Your New (or Modified) Connection and Making Further Configurations

				Once you have finished editing the wireless connection, click the Apply button to save your configuration. Given a correct configuration, you can connect to your modified connection by selecting it from the Notification Area applet. See Section 2.2.1, “Connecting to a Network Using a GUI” [Draft] for details on selecting and connecting to a network.
			

				You can further configure an existing connection by selecting it in the Network window and clicking the gear wheel icon to reveal the connection details.
			

				Then, to configure:
			
	
						security authentication for the wireless connection, click Security and proceed to Section 2.2.10.2, “Configuring Wi-Fi Security” [Draft];
					

	
						IPv4 settings for the connection, click IPv4 and proceed to Section 2.2.10.4, “Configuring IPv4 Settings” [Draft]; or,
					

	
						IPv6 settings for the connection, click IPv6 and proceed to Section 2.2.10.5, “Configuring IPv6 Settings” [Draft].
					

 ⁠2.2.7. Establishing a VPN Connection [Draft]

				Establishing a Virtual Private Network (VPN) enables communication between your Local Area Network (LAN), and another, remote LAN. This is done by setting up a tunnel across an intermediate network such as the Internet. The VPN tunnel that is set up typically uses authentication and encryption. After successfully establishing a VPN connection using a secure tunnel, a VPN router or gateway performs the following actions upon the packets you transmit:
			
	
						it adds an Authentication Header for routing and authentication purposes;
					

	
						it encrypts the packet data; and,
					

	
						it encloses the data in packets according to the Encapsulating Security Payload (ESP) protocol, which constitutes the decryption and handling instructions.
					

				The receiving VPN router strips the header information, decrypts the data, and routes it to its intended destination (either a workstation or other node on a network). Using a network-to-network connection, the receiving node on the local network receives the packets already decrypted and ready for processing. The encryption and decryption process in a network-to-network VPN connection is therefore transparent to clients.
			

				Because they employ several layers of authentication and encryption, VPNs are a secure and effective means of connecting multiple remote nodes to act as a unified intranet.
			

 ⁠Procedure 2.3. Adding a New VPN Connection [Draft]

					You can configure a new VPN connection by opening the Network window and selecting the plus symbol below the menu.
				
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Select the plus symbol below the menu. The Add Network Connection window appears.
					

	
						Select the VPN menu entry. The view now changes to offer configuring a VPN manually, or importing a VPN configuration file.
					

						The appropriate NetworkManager VPN plug-in for the VPN type you want to configure must be installed. (see Fedora 20 System Administrator's Guide for more information on how to install new packages in Fedora 20).
					

	
						Click the Add button to open the Choose a VPN Connection Type assistant.
					

	
						Select the VPN protocol for the gateway you are connecting to from the menu. The VPN protocols available for selection in the menu correspond to the NetworkManager VPN plug-ins installed. For example, if the NetworkManager-openswan-gnome package is installed then the IPsec based VPN will be selectable from the menu.
					

	
						The Add Network Connection window changes to present the settings customized for the type of VPN connection you selected in the previous step.
					

 ⁠Procedure 2.4. Editing an Existing VPN Connection [Draft]

					You can configure an existing VPN connection by opening the Network window and selecting the name of the connection from the list. Then click the Edit button.
				
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Select the VPN connection you wish to edit from the left hand menu.
					

	
						Click the Configure button.
					

 ⁠Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

				Five settings in the Editing dialog are common to all connection types, see the General tab:
			
	
						Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the menu of the Network window.
					

	
						Automatically connect to this network when it is available — Select this box if you want NetworkManager to auto-connect to this connection when it is available. See Section 2.2.3, “Connecting to a Network Automatically” [Draft] for more information.
					

	
						All users may connect to this network — Select this box to create a connection available to all users on the system. Changing this setting may require root privileges. See Section 2.2.4, “System-wide and Private Connection Profiles” [Draft] for details.
					

	
						Automatically connect to VPN when using this connection — Select this box if you want NetworkManager to auto-connect to a VPN connection when it is available. Select the VPN from the dropdown menu.
					

	
						Firewall Zone — Select the Firewall Zone from the dropdown menu.
					

 ⁠Configuring the VPN Tab
	 Gateway
	
							The name or IP address of the remote VPN gateway.
						

	 Group name
	
							The name of a VPN group configured on the remote gateway.
						

	 User password
	
							If required, enter the password used to authenticate with the VPN.
						

	 Group password
	
							If required, enter the password used to authenticate with the VPN.
						

	 User name
	
							If required, enter the user name used to authenticate with the VPN.
						

	 Phase1 Algorithms
	
							If required, enter the algorithms to be used to authenticate and set up an encrypted channel.
						

	 Phase2 Algorithms
	
							If required, enter the algorithms to be used for the IPsec negotiations.
						

	 Domain
	
							If required, enter the Domain Name.
						

 ⁠Saving Your New (or Modified) Connection and Making Further Configurations

				Once you have finished editing your new VPN connection, click the Save button to save your customized configuration. If the profile was in use while being edited, power cycle the connection to make NetworkManager apply the changes. If the profile is OFF, set it to ON. See Section 2.2.1, “Connecting to a Network Using a GUI” [Draft] for information on using your new or altered connection.
			

				You can further configure an existing connection by selecting it in the Network window and clicking Configure to return to the Editing dialog.
			

				Then, to configure:
			
	
						IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 2.2.10.4, “Configuring IPv4 Settings” [Draft].
					

 ⁠2.2.8. Establishing a Mobile Broadband Connection [Draft]

				You can use NetworkManager's mobile broadband connection abilities to connect to the following 2G and 3G services:
			
	
						2G — GPRS (General Packet Radio Service), EDGE (Enhanced Data Rates for GSM Evolution), or CDMA (Code Division Multiple Access).
					

	
						3G — UMTS (Universal Mobile Telecommunications System), HSPA (High Speed Packet Access), or EVDO (EVolution Data-Only).
					

				Your computer must have a mobile broadband device (modem), which the system has discovered and recognized, in order to create the connection. Such a device may be built into your computer (as is the case on many notebooks and netbooks), or may be provided separately as internal or external hardware. Examples include PC card, USB Modem or Dongle, mobile or cellular telephone capable of acting as a modem.
			

 ⁠Procedure 2.5. Adding a New Mobile Broadband Connection [Draft]

					You can configure a mobile broadband connection by opening the Network Connections tool and selecting the Mobile Broadband tab.
				
	
						Press the Super key to enter the Activities Overview, type nm-connection-editor and then press Enter. The Network Connections tool appears.
					

	
						Click the Add button. The Choose a Connection Type menu opens.
					

	
						Select the Mobile Broadband menu entry.
					

	
						Click Create to open the Set up a Mobile Broadband Connection assistant.
					

	
						Under Create a connection for this mobile broadband device, choose the 2G- or 3G-capable device you want to use with the connection. If the drop-down menu is inactive, this indicates that the system was unable to detect a device capable of mobile broadband. In this case, click Cancel, ensure that you do have a mobile broadband-capable device attached and recognized by the computer and then retry this procedure. Click the Continue button.
					

	
						Select the country where your service provider is located from the list and click the Continue button.
					

	
						Select your provider from the list or enter it manually. Click the Continue button.
					

	
						Select your payment plan from the drop-down menu and confirm the Access Point Name (APN) is correct. Click the Continue button.
					

	
						Review and confirm the settings and then click the Apply button.
					

	
						Edit the mobile broadband-specific settings by referring to Section 2.2.8, “Configuring the Mobile Broadband Tab” [Draft].
					

 ⁠Procedure 2.6. Editing an Existing Mobile Broadband Connection [Draft]

					Follow these steps to edit an existing mobile broadband connection.
				
	
						Press the Super key to enter the Activities Overview, type nm-connection-editor and then press Enter. The Network Connections tool appears.
					

	
						Select the Mobile Broadband tab.
					

	
						Select the connection you wish to edit and click the Edit button.
					

	
						Configure the connection name, auto-connect behavior, and availability settings.
					

						Five settings in the Editing dialog are common to all connection types, see the General tab:
					
	
								Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the menu of the Network window.
							

	
								Automatically connect to this network when it is available — Select this box if you want NetworkManager to auto-connect to this connection when it is available. See Section 2.2.3, “Connecting to a Network Automatically” [Draft] for more information.
							

	
								All users may connect to this network — Select this box to create a connection available to all users on the system. Changing this setting may require root privileges. See Section 2.2.4, “System-wide and Private Connection Profiles” [Draft] for details.
							

	
								Automatically connect to VPN when using this connection — Select this box if you want NetworkManager to auto-connect to a VPN connection when it is available. Select the VPN from the dropdown menu.
							

	
								Firewall Zone — Select the Firewall Zone from the drop-down menu.
							

	
						Edit the mobile broadband-specific settings by referring to Section 2.2.8, “Configuring the Mobile Broadband Tab” [Draft].
					

 ⁠Saving Your New (or Modified) Connection and Making Further Configurations

				Once you have finished editing your mobile broadband connection, click the Apply button to save your customized configuration. If the profile was in use while being edited, power cycle the connection to make NetworkManager apply the changes. If the profile is OFF, set it to ON. See Section 2.2.1, “Connecting to a Network Using a GUI” [Draft] for information on using your new or altered connection.
			

				You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.
			

				Then, to configure:
			
	
						Point-to-point settings for the connection, click the PPP Settings tab and proceed to Section 2.2.10.3, “Configuring PPP (Point-to-Point) Settings” [Draft];
					

	
						IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 2.2.10.4, “Configuring IPv4 Settings” [Draft]; or,
					

	
						IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 2.2.10.5, “Configuring IPv6 Settings” [Draft].
					

 ⁠Configuring the Mobile Broadband Tab

				If you have already added a new mobile broadband connection using the assistant (see Procedure 2.5, “Adding a New Mobile Broadband Connection” [Draft] for instructions), you can edit the Mobile Broadband tab to disable roaming if home network is not available, assign a network ID, or instruct NetworkManager to prefer a certain technology (such as 3G or 2G) when using the connection.
			
	 Number
	
							The number that is dialed to establish a PPP connection with the GSM-based mobile broadband network. This field may be automatically populated during the initial installation of the broadband device. You can usually leave this field blank and enter the APN instead.
						

	 Username
	
							Enter the user name used to authenticate with the network. Some providers do not provide a user name, or accept any user name when connecting to the network.
						

	 Password
	
							Enter the password used to authenticate with the network. Some providers do not provide a password, or accept any password.
						

	 APN
	
							Enter the Access Point Name (APN) used to establish a connection with the GSM-based network. Entering the correct APN for a connection is important because it often determines:
						
	
									how the user is billed for their network usage; and/or
								

	
									whether the user has access to the Internet, an intranet, or a subnetwork.
								

	 Network ID
	
							Entering a Network ID causes NetworkManager to force the device to register only to a specific network. This can be used to ensure the connection does not roam when it is not possible to control roaming directly.
						

	 Type
	
							Any — The default value of Any leaves the modem to select the fastest network.
						

							3G (UMTS/HSPA) — Force the connection to use only 3G network technologies.
						

							2G (GPRS/EDGE) — Force the connection to use only 2G network technologies.
						

							Prefer 3G (UMTS/HSPA) — First attempt to connect using a 3G technology such as HSPA or UMTS, and fall back to GPRS or EDGE only upon failure.
						

							Prefer 2G (GPRS/EDGE) — First attempt to connect using a 2G technology such as GPRS or EDGE, and fall back to HSPA or UMTS only upon failure.
						

	 Allow roaming if home network is not available
	
							Uncheck this box if you want NetworkManager to terminate the connection rather than transition from the home network to a roaming one, thereby avoiding possible roaming charges. If the box is checked, NetworkManager will attempt to maintain a good connection by transitioning from the home network to a roaming one, and vice versa.
						

	 PIN
	
							If your device's SIM (Subscriber Identity Module) is locked with a PIN (Personal Identification Number), enter the PIN so that NetworkManager can unlock the device. NetworkManager must unlock the SIM if a PIN is required in order to use the device for any purpose.
						

 ⁠2.2.9. Establishing a DSL Connection [Draft]

				This section is intended for those installations which have a DSL card fitted within a host rather than the external combined DSL modem router combinations typical of private consumer or SOHO installations.
			

 ⁠Procedure 2.7. Adding a New DSL Connection [Draft]

					You can configure a new DSL connection by opening the Network Connections window, clicking the Add button and selecting DSL from the Hardware section of the new connection list.
				
	
						Press the Super key to enter the Activities Overview, type nm-connection-editor and then press Enter. The Network Connections tool appears.
					

	
						Click the Add button.
					

	
						The Choose a Connection Type list appears.
					

	
						Select DSL and press the Create button.
					

	
						The Editing DSL Connection 1 window appears.
					

 ⁠Procedure 2.8. Editing an Existing DSL Connection [Draft]

					You can configure an existing DSL connection by opening the Network Connections window and selecting the name of the connection from the list. Then click the Edit button.
				
	
						Press the Super key to enter the Activities Overview, type nm-connection-editor and then press Enter. The Network Connections tool appears.
					

	
						Select the connection you wish to edit and click the Edit button.
					

 ⁠Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

				Five settings in the Editing dialog are common to all connection types, see the General tab:
			
	
						Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the menu of the Network window.
					

	
						Automatically connect to this network when it is available — Select this box if you want NetworkManager to auto-connect to this connection when it is available. See Section 2.2.3, “Connecting to a Network Automatically” [Draft] for more information.
					

	
						All users may connect to this network — Select this box to create a connection available to all users on the system. Changing this setting may require root privileges. See Section 2.2.4, “System-wide and Private Connection Profiles” [Draft] for details.
					

	
						Automatically connect to VPN when using this connection — Select this box if you want NetworkManager to auto-connect to a VPN connection when it is available. Select the VPN from the dropdown menu.
					

	
						Firewall Zone — Select the Firewall Zone from the drop-down menu.
					

 ⁠Configuring the DSL Tab
	 Username
	
							Enter the user name used to authenticate with the service provider.
						

	 Service
	
							Leave blank unless otherwise directed by your service provider.
						

	 Password
	
							Enter the password supplied by the service provider.
						

 ⁠Saving Your New (or Modified) Connection and Making Further Configurations

				Once you have finished editing your DSL connection, click the Apply button to save your customized configuration. If the profile was in use while being edited, power cycle the connection to make NetworkManager apply the changes. If the profile is OFF, set it to ON. See Section 2.2.1, “Connecting to a Network Using a GUI” [Draft] for information on using your new or altered connection.
			

				You can further configure an existing connection by selecting it in the Network Connections window and clicking Edit to return to the Editing dialog.
			

				Then, to configure:
			
	
						The MAC address and MTU settings, click the Wired tab and proceed to Section 2.2.5, “Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings” [Draft];
					

	
						Point-to-point settings for the connection, click the PPP Settings tab and proceed to Section 2.2.10.3, “Configuring PPP (Point-to-Point) Settings” [Draft];
					

	
						IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 2.2.10.4, “Configuring IPv4 Settings” [Draft].
					

 ⁠2.2.10. Configuring Connection Settings [Draft]

 ⁠2.2.10.1. Configuring 802.1X Security [Draft]

					802.1X security is the name of the IEEE standard for port-based Network Access Control (PNAC). It is also called WPA Enterprise. Simply put, 802.1X security is a way of controlling access to a logical network from a physical one. All clients who want to join the logical network must authenticate with the server (a router, for example) using the correct 802.1X authentication method.
				

					802.1X security is most often associated with securing wireless networks (WLANs), but can also be used to prevent intruders with physical access to the network (LAN) from gaining entry. In the past, DHCP servers were configured not to lease IP addresses to unauthorized users, but for various reasons this practice is both impractical and insecure, and thus is no longer recommended. Instead, 802.1X security is used to ensure a logically-secure network through port-based authentication.
				

					802.1X provides a framework for WLAN and LAN access control and serves as an envelope for carrying one of the Extensible Authentication Protocol (EAP) types. An EAP type is a protocol that defines how security is achieved on the network.
				

					You can configure 802.1X security for a wired or wireless connection type by opening the Network window (see Section 2.2.1, “Connecting to a Network Using a GUI” [Draft]) and following the applicable procedure below. Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears. Proceed to Procedure 2.9, “For a Wired Connection” [Draft] or Procedure 2.10, “For a Wireless Connection” [Draft]:
				

 ⁠Procedure 2.9. For a Wired Connection [Draft]
	
							Select a Wired network interface from the left-hand-side menu.
						

	
							Either click on Add Profile to add a new network connection profile for which you want to configure 802.1X security, or select an existing connection profile and click the gear wheel icon.
						

	
							Then select Security and set the symbolic power button to ON to enable settings configuration.
						

	
							Proceed to Section 2.2.10.1.1, “Configuring TLS (Transport Layer Security) Settings” [Draft]
						

 ⁠Procedure 2.10. For a Wireless Connection [Draft]
	
							Select a Wireless network interface from the left-hand-side menu. If necessary, set the symbolic power button to ON and check that your hardware switch is on.
						

	
							Either select the connection name of a new connection, or click the gear wheel icon of an existing connection profile, for which you want to configure 802.1X security. In the case of a new connection, complete any authentication steps to complete the connection and then click the gear wheel icon.
						

	
							Select Security.
						

	
							From the drop-down menu select one of the following security methods: LEAP, Dynamic WEP (802.1X), or WPA & WPA2 Enterprise.
						

	
							Refer to Section 2.2.10.1.1, “Configuring TLS (Transport Layer Security) Settings” [Draft] for descriptions of which extensible authentication protocol (EAP) types correspond to your selection in the Security drop-down menu.
						

 ⁠2.2.10.1.1. Configuring TLS (Transport Layer Security) Settings [Draft]

						With Transport Layer Security, the client and server mutually authenticate using the TLS protocol. The server demonstrates that it holds a digital certificate, the client proves its own identity using its client-side certificate, and key information is exchanged. Once authentication is complete, the TLS tunnel is no longer used. Instead, the client and server use the exchanged keys to encrypt data using AES, TKIP or WEP.
					

						The fact that certificates must be distributed to all clients who want to authenticate means that the EAP-TLS authentication method is very strong, but also more complicated to set up. Using TLS security requires the overhead of a public key infrastructure (PKI) to manage certificates. The benefit of using TLS security is that a compromised password does not allow access to the (W)LAN: an intruder must also have access to the authenticating client's private key.
					

						NetworkManager does not determine the version of TLS supported. NetworkManager gathers the parameters entered by the user and passes them to the daemon, wpa_supplicant, that handles the procedure. It in turn uses OpenSSL to establish the TLS tunnel. OpenSSL itself negotiates the SSL/TLS protocol version. It uses the highest version both ends support.
					

 ⁠Selecting an Authentication Method

						Select from one of following authentication methods:
					
	
								Select TLS for Transport Layer Security and proceed to Section 2.2.10.1.2, “Configuring TLS Settings” [Draft];
							

	
								Select FAST for Flexible Authentication via Secure Tunneling and proceed to Section 2.2.10.1.4, “Configuring Tunneled TLS Settings” [Draft];
							

	
								Select Tunneled TLS for Tunneled Transport Layer Security, otherwise known as TTLS, or EAP-TTLS and proceed to Section 2.2.10.1.4, “Configuring Tunneled TLS Settings” [Draft];
							

	
								Select Protected EAP (PEAP) for Protected Extensible Authentication Protocol and proceed to Section 2.2.10.1.5, “Configuring Protected EAP (PEAP) Settings” [Draft].
							

 ⁠2.2.10.1.2. Configuring TLS Settings [Draft]

					
	 Identity
	
									Provide the identity of this server.
								

	 User certificate
	
									Click to browse for, and select, a personal X.509 certificate file encoded with Distinguished Encoding Rules (DER) or Privacy Enhanced Mail (PEM).
								

	 CA certificate
	
									Click to browse for, and select, an X.509 certificate authority certificate file encoded with Distinguished Encoding Rules (DER) or Privacy Enhanced Mail (PEM).
								

	 Private key
	
									Click to browse for, and select, a private key file encoded with Distinguished Encoding Rules (DER), Privacy Enhanced Mail (PEM), or the Personal Information Exchange Syntax Standard (PKCS #12).
								

	 Private key password
	
									Enter the password for the private key in the Private key field. Select Show password to make the password visible as you type it.
								

 ⁠2.2.10.1.3. Configuring FAST Settings [Draft]

					
	 Anonymous Identity
	
									Provide the identity of this server.
								

	 PAC provisioning
	
									Select the check box to enable and then select from Anonymous, Authenticated, and Both.
								

	 PAC file
	
									Click to browse for, and select, a protected access credential (PAC) file.
								

	 Inner authentication
	
									GTC — Generic Token Card.
								

									MSCHAPv2 — Microsoft Challenge Handshake Authentication Protocol version 2.
								

	 Username
	
									Enter the user name to be used in the authentication process.
								

	 Password
	
									Enter the password to be used in the authentication process.
								

 ⁠2.2.10.1.4. Configuring Tunneled TLS Settings [Draft]

					
	 Anonymous identity
	
									This value is used as the unencrypted identity.
								

	 CA certificate
	
									Click to browse for, and select, a Certificate Authority's certificate.
								

	 Inner authentication
	
									PAP — Password Authentication Protocol.
								

									MSCHAP — Challenge Handshake Authentication Protocol.
								

									MSCHAPv2 — Microsoft Challenge Handshake Authentication Protocol version 2.
								

									CHAP — Challenge Handshake Authentication Protocol.
								

	 Username
	
									Enter the user name to be used in the authentication process.
								

	 Password
	
									Enter the password to be used in the authentication process.
								

 ⁠2.2.10.1.5. Configuring Protected EAP (PEAP) Settings [Draft]

	 Anonymous Identity
	
									This value is used as the unencrypted identity.
								

	 CA certificate
	
									Click to browse for, and select, a Certificate Authority's certificate.
								

	 PEAP version
	
									The version of Protected EAP to use. Automatic, 0 or 1.
								

	 Inner authentication
	
									MSCHAPv2 — Microsoft Challenge Handshake Authentication Protocol version 2.
								

									MD5 — Message Digest 5, a cryptographic hash function.
								

									GTC — Generic Token Card.
								

	 Username
	
									Enter the user name to be used in the authentication process.
								

	 Password
	
									Enter the password to be used in the authentication process.
								

 ⁠2.2.10.2. Configuring Wi-Fi Security [Draft]

	 Security
	
								None — Do not encrypt the Wi-Fi connection.
							

								WEP 40/128-bit Key — Wired Equivalent Privacy (WEP), from the IEEE 802.11 standard. Uses a single pre-shared key (PSK).
							

								WEP 128-bit Passphrase — An MD5 hash of the passphrase will be used to derive a WEP key.
							

								LEAP — Lightweight Extensible Authentication Protocol, from Cisco Systems.
							

								Dynamic WEP (802.1X) — WEP keys are changed dynamically. Use with Section 2.2.10.1.1, “Configuring TLS (Transport Layer Security) Settings” [Draft]
							

								WPA & WPA2 Personal — Wi-Fi Protected Access (WPA), from the draft IEEE 802.11i standard. A replacement for WEP. Wi-Fi Protected Access II (WPA2), from the 802.11i-2004 standard. Personal mode uses a pre-shared key (WPA-PSK).
							

								WPA & WPA2 Enterprise — WPA for use with a RADIUS authentication server to provide IEEE 802.1X network access control. Use with Section 2.2.10.1.1, “Configuring TLS (Transport Layer Security) Settings” [Draft]
							

	Password
	
								Enter the password to be used in the authentication process.
							

 ⁠2.2.10.3. Configuring PPP (Point-to-Point) Settings [Draft]

				
	 Configure Methods
	
							

	 Use point-to-point encryption (MPPE)
	
								Microsoft Point-To-Point Encryption protocol (RFC 3078).
							

	 Allow BSD data compression
	
								PPP BSD Compression Protocol (RFC 1977).
							

	 Allow Deflate data compression
	
								PPP Deflate Protocol (RFC 1979).
							

	 Use TCP header compression
	
								Compressing TCP/IP Headers for Low-Speed Serial Links (RFC 1144).
							

	 Send PPP echo packets
	
								LCP Echo-Request and Echo-Reply Codes for loopback tests (RFC 1661).
							

 ⁠2.2.10.4. Configuring IPv4 Settings [Draft]

					The IPv4 Settings tab allows you to configure the method used to connect to a network, to enter IP address, route, and DNS information as required. The IPv4 Settings tab is available when you create and modify one of the following connection types: wired, wireless, mobile broadband, VPN or DSL. If you need to configure IPv6 addresses, see Section 2.2.10.5, “Configuring IPv6 Settings” [Draft]. If you need to configure static routes, click the Routes button and proceed to Section 2.2.10.6, “Configuring Routes” [Draft].
				

					If you are using DHCP to obtain a dynamic IP address from a DHCP server, you can simply set Method to Automatic (DHCP).
				

 ⁠Setting the Method

 ⁠Available IPv4 Methods by Connection Type [Draft]

						When you click the Method drop-down menu, depending on the type of connection you are configuring, you are able to select one of the following IPv4 connection methods. All of the methods are listed here according to which connection type, or types, they are associated with:
					
	 Method
	
								Automatic (DHCP) — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses. You do not need to fill in the DHCP client ID field.
							

								Automatic (DHCP) addresses only — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses but you want to assign DNS servers manually.
							

								Link-Local Only — Choose this option if the network you are connecting to does not have a DHCP server and you do not want to assign IP addresses manually. Random addresses will be assigned as per RFC 3927 with prefix 169.254/16.
							

								Shared to other computers — Choose this option if the interface you are configuring is for sharing an Internet or WAN connection. The interface is assigned an address in the 10.42.x.1/24 range, a DHCP server and DNS server are started, and the interface is connected to the default network connection on the system with network address translation (NAT).
							

								Disabled — IPv4 is disabled for this connection.
							

	Wired, Wireless and DSL Connection Methods
	
								Manual — Choose this option if you want to assign IP addresses manually.
							

	Mobile Broadband Connection Methods
	
								Automatic (PPP) — Choose this option if the network you are connecting to assigns your IP address and DNS servers automatically.
							

								Automatic (PPP) addresses only — Choose this option if the network you are connecting to assigns your IP address automatically, but you want to manually specify DNS servers.
							

	VPN Connection Methods
	
								Automatic (VPN) — Choose this option if the network you are connecting to assigns your IP address and DNS servers automatically.
							

								Automatic (VPN) addresses only — Choose this option if the network you are connecting to assigns your IP address automatically, but you want to manually specify DNS servers.
							

	DSL Connection Methods
	
								Automatic (PPPoE) — Choose this option if the network you are connecting to assigns your IP address and DNS servers automatically.
							

								Automatic (PPPoE) addresses only — Choose this option if the network you are connecting to assigns your IP address automatically, but you wish to manually specify DNS servers.
							

					For information on configuring static routes for the network connection, go to Section 2.2.10.6, “Configuring Routes” [Draft].
				

 ⁠2.2.10.5. Configuring IPv6 Settings [Draft]

	 Method
	
								Ignore — Choose this option if you want to ignore IPv6 settings for this connection.
							

								Automatic — Choose this option to use router advertisement (RA) to create an automatic, stateless configuration.
							

								Automatic, addresses only — Choose this option if the network you are connecting to uses a DHCP server to assign IP addresses but you want to assign DNS servers manually.
							

								Automatic, DHCP only — Choose this option to not use RA, but request information from DHCPv6 directly to create a stateful configuration.
							

								Manual — Choose this option if the network you are connecting to does not have a DHCP server and you want to assign IP addresses manually.
							

								Link-Local Only — Choose this option if the network you are connecting to does not have a DHCP server and you do not want to assign IP addresses manually. Random addresses will be assigned as per RFC 4862 with prefix FE80::0.
							

	 Addresses
	
								DNS servers — Enter a comma separated list of DNS servers.
							

								Search domains — Enter a comma separated list of domain controllers.
							

					For information on configuring static routes for the network connection, go to Section 2.2.10.6, “Configuring Routes” [Draft].
				

 ⁠2.2.10.6. Configuring Routes [Draft]

					A host's routing table will be automatically populated with routes to directly connected networks. The routes are learned by examining the network interfaces when they are “up”. This section describes entering static routes to networks or hosts which can be reached by traversing an intermediate network or connection, such as a VPN tunnel or leased line. In order to reach a remote network or host, the system is given the address of a gateway to which traffic should be sent.
				

					When a host's interface is configured by DHCP, an address of a gateway that leads to an upstream network or the Internet is usually assigned. This gateway is usually referred to as the default gateway as it is the gateway to use if no better route is known to the system (and present in the routing table). Network administrators often use the first or last host IP address in the network as the gateway address; for example, 192.168.10.1 or 192.168.10.254. Not to be confused by the address which represents the network itself; in this example, 192.168.10.0, or the subnet's broadcast address; in this example 192.168.10.255.
				

 ⁠Configuring Static Routes

					To set a static route, open the IPv4 or IPv6 settings window for the connection you want to configure. See Section 2.2.1, “Connecting to a Network Using a GUI” [Draft] for instructions on how to do that.
				
	 Routes
	
								Address — Enter the IP address of a remote network, sub-net, or host.
							

								Netmask — The netmask or prefix length of the IP address entered above.
							

								Gateway — The IP address of the gateway leading to the remote network, sub-net, or host entered above.
							

								Metric — A network cost, a preference value to give to this route. Lower values will be preferred over higher values.
							

	 Automatic
	
								When Automatic is ON, routes from RA or DHCP are used, but you can also add additional static routes. When OFF, only static routes you define are used.
							

	 Use this connection only for resources on its network
	
								Select this check box to prevent the connection from becoming the default route. Typical examples are where a connection is a VPN tunnel or a leased line to a head office and you do not want any Internet-bound traffic to pass over the connection. Selecting this option means that only traffic specifically destined for routes learned automatically over the connection or entered here manually will be routed over the connection.
							

 ⁠2.3. Using the Command Line Interface (CLI) [Draft]

 ⁠2.3.1. Configuring a Network Interface Using ifcfg Files [Draft]

				Interface configuration files control the software interfaces for individual network devices. As the system boots, it uses these files to determine what interfaces to bring up and how to configure them. These files are usually named ifcfg-name, where the suffix name refers to the name of the device that the configuration file controls. By convention, the ifcfg file's suffix, ethX, is the same as the string given by the DEVICE directive in the configuration file itself.
			

 ⁠Static Network Settings

				To configure an interface with static network settings using ifcfg files, for an interface with name eth0, create a file with name ifcfg-eth0 in the /etc/sysconfig/network-scripts/ directory as follows:
DEVICE=eth0
BOOTPROTO=none
ONBOOT=yes
NETMASK=255.255.255.0
IPADDR=10.0.1.27
NM_CONTROLLED=no

				 Optionally specify the hardware or MAC address using the HWADDR directive. Note that this will influence the device naming procedure as explained in Chapter 8, Consistent Network Device Naming [Draft]. You do not need to specify the broadcast address as this is calculated automatically by ipcalc.
			

 ⁠Dynamic Network Settings

				To configure an interface with dynamic network settings using ifcfg files, for an interface with name em1, create a file with name ifcfg-em1 in the /etc/sysconfig/network-scripts/ directory as follows:
DEVICE=em1
BOOTPROTO=dhcp
ONBOOT=yes
NM_CONTROLLED=no

				 Optionally specify the hardware or MAC address using the HWADDR directive. Note that this will influence the device naming procedure as explained in Chapter 8, Consistent Network Device Naming [Draft]. You do not need to specify the broadcast address as this is calculated automatically by ipcalc.
			

				For a listing of the configurable parameters in an Ethernet interface configuration file see the Fedora 20 System Administrator's Reference Guide.
			

 ⁠2.3.2. Configuring a Network Interface Using ip Commands [Draft]

				The ip utility can be used to assign IP addresses to an interface. The command takes the following form: ip addr [add | del] address dev ifname

			

 ⁠ Assigning a Static Address Using ip Commands

				To assign an IP address to an interface, issue a command as root as follows:
~]# ip address add 10.0.0.3/24 dev eth0
The address assignment of a specific device can be viewed as follows:
~]# ip addr show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
 link/ether f0:de:f1:7b:6e:5f brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.3/24 brd 10.0.0.255 scope global global eth0
 valid_lft 58682sec preferred_lft 58682sec
 inet6 fe80::f2de:f1ff:fe7b:6e5f/64 scope link
 valid_lft forever preferred_lft forever

				 Further examples and command options can be found in the ip-address(8) manual page.
			

 ⁠ Configuring Multiple Addresses Using ip Commands

				As the ip utility supports assigning multiple addresses to the same interface it is no longer necessary to use the alias interface method of binding multiple addresses to the same interface. The ip command to assign an address can be repeated multiple times in order to assign multiple address. For example:
~]# ip address add 192.168.2.223/24 dev eth1
~]# ip address add 192.168.4.223/24 dev eth1
~]# ip addr
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
 link/ether 52:54:00:fb:77:9e brd ff:ff:ff:ff:ff:ff
 inet 192.168.2.223/24 scope global eth1
 inet 192.168.4.223/24 scope global eth1

			

				The commands for the ip utility are documented in the ip(8) manual page.
			
Note [Draft]

					Note that ip commands given on the command line will not persist after a system restart.
				

 ⁠2.3.3. Static Routes and the Default Gateway [Draft]

				Static routes are for traffic that must not, or should not, go through the default gateway. Routing is usually handled by routing devices and therefore it is often not necessary to configure static routes on Fedora servers or clients. Exceptions include traffic that must pass through an encrypted VPN tunnel or traffic that should take a less costly route. The default gateway is for any and all traffic which is not destined for the local network and for which no preferred route is specified in the routing table. The default gateway is traditionally a dedicated network router.
			

 ⁠ Configuring Static Routes Using the Command Line

				Use the ip route command to display the IP routing table. If static routes are required, they can be added to the routing table by means of the ip route add command and removed using the ip route del command. To add a static route to a host address, that is to say to a single IP address, issue the following command as root:
ip route add 192.0.2.1

				 where 192.0.2.1 is the IP address of the host in dotted decimal notation. To add a static route to a network, that is to say to an IP address representing a range of IP addresses, issue the following command as root:
ip route add 192.0.2.0/24

				 where 192.0.2.0 is the IP address of the network in dotted decimal notation and /24 is the network prefix. The network prefix is the number of enabled bits in the subnet mask. This format of network address slash prefix length is referred to as CIDR notation.
			

				Static route configuration is stored per-interface in a /etc/sysconfig/network-scripts/route-interface file. For example, static routes for the eth0 interface would be stored in the /etc/sysconfig/network-scripts/route-eth0 file. The route-interface file has two formats: ip command arguments and network/netmask directives. These are described below.
			

 ⁠ Configuring The Default Gateway

				The default gateway is determined by the network scripts which parse the /etc/sysconfig/network file first and then the network interface ifcfg files for interfaces that are “up”. The ifcfg files are parsed in numerically ascending order, and the last GATEWAY directive to be read is used to compose a default route in the routing table.
			

				The default route can thus be indicated by means of the GATEWAY directive and can be specified either globally or in interface-specific configuration files. Specifying the gateway globally has certain advantages in static networking environments, especially if more than one network interface is present. It can make fault finding simpler if applied consistently. There is also the GATEWAYDEV directive, which is a global option. If multiple devices specify GATEWAY, and one interface uses the GATEWAYDEV directive, that directive will take precedence. This option is not recommend as it can have unexpected consequences if an interface goes down and it can complicate fault finding.
			

				In dynamic network environments, where mobile hosts are managed by NetworkManager, gateway information is likely to be interface specific and is best left to be assigned by DHCP. In special cases where it is necessary to influence NetworkManager's selection of the exit interface to be used to reach a gateway, make use of the DEFROUTE=no command in the ifcfg files for those interfaces which do not lead to the default gateway.
			

				Global default gateway configuration is stored in the /etc/sysconfig/network file. This file specifies gateway and host information for all network interfaces. For more information about this file and the directives it accepts, see the Fedora 20 System Administrator's Reference Guide.
			

 ⁠2.3.4. Configuring Static Routes in ifcfg files [Draft]

				Static routes set using ip commands on the command line will be lost if the system is shutdown or restarted. To configure static routes to be persistent after a system restart, they must be placed in per-interface configuration files in the /etc/sysconfig/network-scripts/ directory. The file name should be of the format route-ethX. There are two types of commands to use in the configuration files; ip commands as explained in Section 2.3.4, “ Static Routes Using the IP Command Arguments Format ” [Draft] and the Network/Netmask format as explained in Section 2.3.4, “ Network/Netmask Directives Format” [Draft].
			

 ⁠ Static Routes Using the IP Command Arguments Format

				If required in a per-interface configuration file, for example /etc/sysconfig/network-scripts/route-eth0, define a route to a default gateway on the first line. This is only required if the gateway is not set via DHCP and is not set globally in the /etc/sysconfig/network file:
			
default via 192.168.1.1 dev interface

				where 192.168.1.1 is the IP address of the default gateway. The interface is the interface that is connected to, or can reach, the default gateway. The dev option can be omitted, it is optional. Note that this setting takes precedence over a setting in the /etc/sysconfig/network file.
			

				If a route to a remote network is required, define a static route. Each line is parsed as an individual route:
			
10.10.10.0/24 via 192.168.1.1 dev interface

				where 10.10.10.0/24 is the network address and netmask of the remote network or host. 192.168.1.1 and interface are the IP address and interface for the gateway leading to the remote network. Add as many static routes as required.
			

				The following is a sample route-eth0 file using the ip command arguments format. The default gateway is 192.168.0.1, interface eth0 and a leased line or WAN connection is available at 192.168.0.10. The two static routes are for reaching the 10.10.10.0/24 network and the 172.16.1.10/32 host:
			
default via 192.168.0.1 dev eth0
10.10.10.0/24 via 192.168.0.10 dev eth0
172.16.1.10/32 via 192.168.0.10 dev eth0

				Static routes should only be configured for remote networks or hosts, that is to say, networks or hosts that are not directly attached to the system. Packets going to the 192.168.0.0/24 network will be directed out the interface attached to that network. Packets to unknown, remote, networks will use the default gateway. Below is an example of setting static routes to a different network, on a machine in the 192.168.0.0/24 network. The example machine has an eth0 interface in the 192.168.0.0/24 network, and an eth1 interface (with address 10.10.10.1) in the 10.10.10.0/24 network:
			
10.10.10.0/24 via 10.10.10.1 dev eth1

				Specifying an exit interface is optional. It can be useful if you want to force traffic out of a specific interface. For example, in the case of a VPN, you can force traffic to a remote network to pass through a tun0 interface even when the interface is in a different subnet to the destination network.
			
Duplicate default gateways [Draft]

					If the default gateway is already assigned by DHCP, the ip command arguments format can cause one of two errors during start-up, or when bringing up an interface from the down state using the ifup command: "RTNETLINK answers: File exists" or 'Error: either "to" is a duplicate, or "X.X.X.X" is a garbage.', where X.X.X.X is the gateway, or a different IP address. These errors can also occur if you have another route to another network using the default gateway. Both of these errors are safe to ignore.
				

 ⁠ Network/Netmask Directives Format

				You can also use the network/netmask directives format for route-interface files. The following is a template for the network/netmask format, with instructions following afterwards:
			
 ADDRESS0=10.10.10.0 NETMASK0=255.255.255.0 GATEWAY0=192.168.1.1
	
						ADDRESS0=10.10.10.0 is the network address of the remote network or host to be reached.
					

	
						NETMASK0=255.255.255.0 is the netmask for the network address defined with ADDRESS0=10.10.10.0.
					

	
						GATEWAY0=192.168.1.1 is the default gateway, or an IP address that can be used to reach ADDRESS0=10.10.10.0
					

				The following is a sample route-eth0 file using the network/netmask directives format. The default gateway is 192.168.0.1, interface eth0. The two static routes are for reaching the 10.10.10.0/24 and 172.16.1.0/24 networks. This example is not necessary as traffic trying to reach a remote network or host would use the default gateway anyway:
			
ADDRESS0=10.10.10.0
NETMASK0=255.255.255.0
GATEWAY0=192.168.0.1
ADDRESS1=172.16.1.0
NETMASK1=255.255.255.0
GATEWAY1=192.168.0.1

				Subsequent static routes must be numbered sequentially, and must not skip any values. For example, ADDRESS0, ADDRESS1, ADDRESS2, and so on.
			

				Below is an example of setting static routes to a different network, on a machine in the 192.168.0.0/24 network. The example machine has an eth0 interface in the 192.168.0.0/24 network, and an eth1 interface (with address 10.10.10.1) in the 10.10.10.0/24 network:
			
ADDRESS0=10.10.10.0
NETMASK0=255.255.255.0
GATEWAY0=10.10.10.1

				Note that if DHCP is used, it can assign these settings automatically.
			

 ⁠2.3.5. Configuring IPv6 Tokenized Interface Identifiers [Draft]

				In a network, servers are generally given static addresses and these are usually configured manually to avoid relying on a DHCP server which may fail or run out of addresses. The IPv6 protocol introduced Stateless Address Autoconfiguration (SLAAC) which enables clients to assign themselves an address without relying on a DHCPv6 server. SLAAC derives the IPv6 address based on the interface hardware, therefore it should not be used for servers in case the hardware is changed and the associated SLAAC generated address changes with it. In an IPv6 environment, if the network prefix is changed, or the system is moved to a new location, any manually configured static addresses would have to be edited due to the changed prefix.
			

				To address these problems, the IETF draft Tokenised IPv6 Identifiers has been implemented in the kernel together with corresponding additions to the ip utility. This enables the lower 64 bit interface identifier part of the IPv6 address to be based on a token, supplied by the administrator, leaving the network prefix, the higher 64 bits, to be obtained from router advertisements (RA). This means that if the network interface hardware is changed, the lower 64 bits of the address will not change, and if the system is moved to another network, the network prefix will be obtained from router advertisements automatically, thus no manual editing is required.
			

				To configure an interface to use a tokenized IPv6 identifier, issue a command in the following format as root user:
~]# ip token set ::1a:2b:3c:4d/64 dev eth4

				 Where ::1a:2b:3c:4d/64 is the token to be used. This setting is not persistent. To make it persistent, add the command to an init script.
			

				Using a memorable token is possible, but is limited to the range of valid hexadecimal digits. For example, for a DNS server, which traditionally uses port 53, a token of ::53/64 could be used.
			

				To view all the configured IPv6 tokens, issue the following command:
~]$ ip token
 token :: dev eth0
 token :: dev eth1
 token :: dev eth2
 token :: dev eth3
 token ::1a:2b:3c:4d dev eth4

			

				To view the configured IPv6 token for a specific interface, issue the following command:
~]$ ip token get dev eth4
 token ::1a:2b:3c:4d dev eth4

			

				Note that adding a token to an interface will replace a previously allocated token, and in turn invalidate the address derived from it. Supplying a new token causes a new address to be generated and applied, but this process will leave any other addresses unchanged. In other words, a new tokenized identifier only replaces a previously existing tokenized identifier, not any other IP address.
			
Note [Draft]

					Take care not to add the same token to more than one system or interface as the duplicate address detection (DAD) mechanism will not be able to resolve the problem. Once a token is set, it cannot be cleared or reset, except by rebooting the machine.
				

 ⁠2.4. Using the NetworkManager Command Line Tool, nmcli [Draft]

			The command‐line tool nmcli can be used by both users and scripts for controlling NetworkManager. The basic format of a command is as follows: nmcli OPTIONS OBJECT { COMMAND | help }
 where OBJECT can be one of general, networking, radio, connection, or device. The most used options are: -t, --terse for use in scripts, the -p, --pretty option for users, and the -h, --help option. Command completion has been implemented for nmcli, so remember to press Tab when ever you are unsure of the command options available. See the nmcli(1) man page for a complete list of the options and commands.
		

			The nmcli tool has some built-in context sensitive help. For example, issue the following two commands and notice the difference:
~]$ nmcli help
Usage: nmcli [OPTIONS] OBJECT { COMMAND | help }

OPTIONS
 -t[erse] terse output
 -p[retty] pretty output
 -m[ode] tabular|multiline output mode
 -f[ields] <field1,field2,...>|all|common specify fields to output
 -e[scape] yes|no escape columns separators in values
 -n[ocheck] don't check nmcli and NetworkManager versions
 -a[sk] ask for missing parameters
 -w[ait] <seconds> set timeout waiting for finishing operations
 -v[ersion] show program version
 -h[elp] print this help

OBJECT
 g[eneral] NetworkManager's general status and operations
 n[etworking] overall networking control
 r[adio] NetworkManager radio switches
 c[onnection] NetworkManager's connections
 d[evice] devices managed by NetworkManager

			
~]$ nmcli general help
Usage: nmcli general { COMMAND | help }

 COMMAND := { status | permissions | logging }

 status

 permissions

 logging [level <log level>] [domains <log domains>]

			 In the second example above the help is related to the object general.
		

			The nmcli-examples(5) man page has many useful examples. A brief selection is shown here:
		

			To show the overall status of NetworkManager: nmcli general status
 To control NetworkManager logging: nmcli general logging
 To show all connections: nmcli connection show
 To show only currently active connections, add the -a, --active option as follows: nmcli connection show --active
 To show devices recognized by NetworkManager and their state: nmcli device status

		

			Commands can be shortened and some options omitted. For example the command: nmcli connection modify id 'MyCafe' 802-11-wireless.mtu 1350
 Can be reduced to the following command: nmcli con mod MyCafe 802-11-wireless.mtu 1350
 The id option can been omitted because the connection ID (name) is unambiguous for nmcli in this case. As you become familiar with the commands, further abbreviations can be made. For example: nmcli connection add type ethernet
 can be reduced to: nmcli c a type eth
 Note [Draft]

					Remember to use tab completion when in doubt.
				

		

 ⁠Starting and Stopping an Interface Using nmcli

			The nmcli tool can be used to start and stop any network interface including masters. For example:
nmcli con up id bond0
nmcli con up id port0
nmcli dev disconnect iface bond0
nmcli dev disconnect iface eth0

		
Note [Draft]

				It is recommended to use nmcli dev disconnect iface iface-name rather than nmcli con down id id-string because disconnection places the interface into a “manual” mode, in which no automatic connection will be started until the user tells NetworkManager to start a connection or until an external event like a carrier change, hibernate, or sleep, occurs.
			

 ⁠The nmcli Interactive Connection Editor

			The nmcli tool has an interactive connection editor. To use it, enter the following command:
~]$ nmcli con edit

			 You will be prompted to enter a valid connection type from the list displayed. After entering a connection type you will be placed at the nmcli prompt. If you are familiar with the connection types you can add a valid connection type option to the nmcli con edit command and be taken straight to the nmcli prompt. The format is as follows for editing an existing connection profile: nmcli con edit [id | uuid | path] ID
 For adding and editing a new connection profile, the following format applies: nmcli con edit [type new-connection-type] [con-name new-connection-name]

		

			Type help at the nmcli prompt to see a list of valid commands. Use the describe command to get a description of settings and their properties. The format is as follows: describe setting.property
 For example:
nmcli> describe team.config

		

 ⁠2.4.1. Understanding the nmcli Options [Draft]

				Many of the nmcli commands are self-explanatory, however a few command options are worth a moments study:
			
	type — The connection type.
	
							Allowed values are: adsl, bond, bond-slave, bridge, bridge-slave, bluetooth, cdma, ethernet, gsm, infiniband, olpc-mesh, team, team-slave, vlan, wifi, wimax.
						

							Each connection type has type-specific command options. Press Tab to see a list of them or see the TYPE_SPECIFIC_OPTIONS list in the nmcli(1) man page. The type option is applicable after the following: nmcli connection add and nmcli connection edit.
						

	con-name — The name assigned to a connection profile.
	
							If you do not specify a connection name, one will be generated as follows: type-ifname[-number]

						

							The connection name is the name of a connection profile and should not be confused with the interface name that denotes a device (wlan0, eth0, em1, and so on). Users can however name the connections after interfaces, but they are not the same thing. There can be multiple connection profiles available for a device. This is particularly useful for mobile devices or when switching a network cable back and forth between different devices. Rather than edit the configuration, create different profiles and apply them to the interface as needed. The id option also refers to the connection profile name.
						

	id — An identification string assigned by the user to a connection profile.
	
							The ID can be used in nmcli connection commands to identify a connection. The NAME field in the output always denotes the connection ID (name). It refers to the same connection profile name that the con-name does.
						

	uuid — A unique identification string assigned by the system to a connection profile.
	
							The UUID can be used in nmcli connection commands to identify a connection.
						

 ⁠2.4.2. Connecting to a Network Using nmcli [Draft]

				To list the currently available network connections, issue a command as follows:
~]$ nmcli con show
NAME UUID TYPE TIMESTAMP-REAL
eth0 4d5c449a-a6c5-451c-8206 802-3-ethernet Tue 22 Oct 2013 19:50:00 BST
MyWiFi 91451385-4eb8-4080-8b82 802-11-wireless Tue 22 Oct 2013 08:50:08 BST
Bond connection 1 720aab83-28dd-4598-9325 bond never

				 Note that the NAME field in the output always denotes the connection ID (name). It is not the interface name even though it might look the same. In the example above eth0 is the connection ID given by the user to the profile applied to the interface eth0. In the second line the user has assigned the connection ID MyWiFi to the interface wlan0.
			

				Device status can also be viewed:
~]$ nmcli dev status
DEVICE TYPE STATE
wlan0 802-11-wireless connected
bond0 bond connecting (getting IP configuration)
eth0 ethernet disconnected
lo loopback unmanaged

			

 ⁠Adding an Ethernet Connection

				To add an Ethernet connection with manual IP configuration, issue a command as follows:
~]$ nmcli con add con-name my-eth1 ifname eth1 type ethernet ip4 192.168.100.100/24 \
 gw4 192.168.100.1

				 Optionally, at the same time specify IPv6 addresses for the device as follows:
~]$ nmcli con add con-name my-eth1 ifname eth1 type ethernet ip4 192.168.100.100/24 \
 gw4 192.168.100.1 ip6 abbe::cafe gw6 2001:db8::1

				 To add two IPv4 DNS server addresses:
~]$ nmcli con mod my-eth1 ipv4.dns "8.8.8.8 8.8.4.4"

				 To add two IPv6 DNS server addresses:
~]$ nmcli con mod my-eth1 ipv6.dns "2001:4860:4860::8888 2001:4860:4860::8844"

				 To bring up the new connection, issue a command as follows:
~]$ nmcli -p con up "my-eth1" ifname eth1

				 To view detailed information about the newly configured connection, issue a command as follows:
~]$ nmcli -p con show configured my-eth1

			

				To lock a profile to a specific interface, issue a command as follows:
~]$ nmcli connection add type ethernet con-name "my-eth1" ifname eth1

				 To make a profile usable for all compatible Ethernet interfaces, issue a command as follows:
~]$ nmcli connection add type ethernet con-name "my-eth1" ifname "*"

				 Note that you have to use the ifname argument even if you do not want to set a specific interface. Use the wildcard character * to specify that the profile can be used with any compatible device.
			

				To lock a profile to a specific MAC address, issue a command as follows:
~]$ nmcli connection add type ethernet con-name "my-eth1" ifname "*" mac 00:00:5E:00:53:00

				
			

 ⁠Adding a Wi-Fi Connection

				To view the available Wi-Fi access points, issue a command as follows:
~]$ nmcli dev wifi list
 SSID MODE CHAN RATE SIGNAL BARS SECURITY
 FedoraTest Infra 11 54 MB/s 98 ▂▄▆█ WPA1
 Red Hat Guest Infra 6 54 MB/s 97 ▂▄▆█ WPA2
 Red Hat Infra 6 54 MB/s 77 ▂▄▆_ WPA2 802.1X
* Red Hat Infra 40 54 MB/s 66 ▂▄▆_ WPA2 802.1X
 VoIP Infra 1 54 MB/s 32 ▂▄__ WEP
 MyCafe Infra 11 54 MB/s 39 ▂▄__ WPA2

			

				To create a Wi-Fi connection profile with manual IP configuration, but allowing automatic DNS address assignment, issue a command as follows:
~]$ nmcli con add con-name MyCafe ifname wlan0 type wifi ssid MyCafe \
 p4 192.168.100.101/24 gw4 192.168.100.1

				 To set a WPA2 password, for example “caffeine”, issue commands as follows:
~]$ nmcli con modify MyCafe wifi-sec.key-mgmt wpa-psk
~]$ nmcli con modify MyCafe wifi-sec.psk caffeine

			

				To change Wi-Fi state, issue a command in the following format:
~]$ nmcli radio wifi [on | off]

			

 ⁠Changing a Specific Property

				To check a specific property, for example mtu, issue a command as follows:
~]$ nmcli connection show id 'MyCafe' | grep mtu
802-11-wireless.mtu: auto

				 To change the property of a setting, issue a command as follows:
~]$ nmcli connection modify id 'MyCafe' 802-11-wireless.mtu 1350

				 To verify the change, issue a command as follows:
~]$ nmcli connection show id 'MyCafe' | grep mtu
802-11-wireless.mtu: 1350

			

				Note that NetworkManager refers to parameters such as 802-3-ethernet and 802-11-wireless as the setting, and mtu as a property of the setting. See the nm-settings(5) man page for more information on properties and their settings.
			

 ⁠2.5. Additional Resources [Draft]

			The following sources of information provide additional resources relevant to this chapter.
		

 ⁠2.5.1. Installed Documentation [Draft]

	
						ip(8) man page — Describes the ip utility's command syntax.
					

	
						nmcli(1) man page — Describes NetworkManager's command‐line tool.
					

	
						nmcli-examples(5) man page — Gives examples of nmcli commands.
					

	
						nm-settings(5) man page — Describes NetworkManager properties and their settings.
					

 ⁠2.5.2. Online Documentation [Draft]

					RFC 1518 — Classless Inter-Domain Routing (CIDR)
	
								Describes the CIDR Address Assignment and Aggregation Strategy, including variable-length subnetting.
							

	RFC 1918 — Address Allocation for Private Internets
	
								Describes the range of IPv4 addresses reserved for private use.
							

	RFC 3330 — Special-Use IPv4 Addresses
	
								Describes the global and other specialized IPv4 address blocks that have been assigned by the Internet Assigned Numbers Authority (IANA).
							

			

 ⁠Chapter 3. Configure Host Names [Draft]

 ⁠3.1. Understanding Host Names [Draft]

			There are three classes of hostname: static, pretty, and transient.
		

			The “static” host name is the traditional hostname, which can be chosen by the user, and is stored in the /etc/hostname file. The “transient” hostname is a dynamic host name maintained by the kernel. It is initialized to the static host name by default, whose value defaults to “localhost”. It can be changed by DHCP or mDNS at runtime. The “pretty” hostname is a free-form UTF8 host name for presentation to the user.
			Note [Draft]

					A host name can be a free-form string up to 64 characters in length. However, Red Hat recommends that both static and transient names match the fully-qualified domain name (FQDN) used for the machine in DNS, such as host.example.com. It is also recommended that the static and transient names consists only of 7 bit ASCII lower-case characters, no spaces or dots, and limits itself to the format allowed for DNS domain name labels, even though this is not a strict requirement. Older specifications do not permit the underscore, and so their use is not recommended.
				

					The hostnamectl tool will enforce the following: Static and transient host names to consist of a-z, A-Z, 0-9, “-”, “_” and “.” only, to not begin or end in a dot, and to not have two dots immediately following each other. The size limit of 64 characters is enforced.
				

		

 ⁠3.1.1. Recommended Naming Practices [Draft]

				The Internet Corporation for Assigned Names and Numbers (ICANN) sometimes adds previously unregistered Top-Level Domains (such as .yourcompany) to the public register. Therefore, Red Hat strongly recommends that you do not use a domain name that is not delegated to you, even on a private network, as this can result in a domain name that resolves differently depending on network configuration. As a result, network resources can become unavailable. Using domain names that are not delegated to you also makes DNSSEC more difficult to deploy and maintain, as domain name collisions require manual configuration to enable DNSSEC validation. See the ICANN FAQ on domain name collision for more information on this issue.
			

 ⁠3.2. Configuring Host Names Using hostnamectl [Draft]

			The hostnamectl tool is provided for administering the three separate classes of host names in use on a given system.
		

 ⁠3.2.1. View All the Host Names [Draft]

				To view all the current host names, enter the following command:
~]$ hostnamectl status

				 The status option is implied by default if no option is given.
			

 ⁠3.2.2. Set All the Host Names [Draft]

				To set all the host names on a system, enter the following command as root:
~]# hostnamectl set-hostname name

				 This will alter the pretty, static, and transient host names alike. The static and transient host names will be simplified forms of the pretty host name. Spaces will be replaced with “-” and special characters will be removed.
			

 ⁠3.2.3. Set a Particular Host Name [Draft]

				To set a particular host name, enter the following command as root with the relevant option:
~]# hostnamectl set-hostname name [option...]

				 Where option is one or more of: --pretty, --static, and --transient.
			

				If the --static or --transient options are used together with the --pretty option, the static and transient host names will be simplified forms of the pretty host name. Spaces will be replaced with “-” and special characters will be removed. If the --pretty option is not given, no simplification takes place.
			

				When setting a pretty host name, remember to use the appropriate quotation marks if the host name contains spaces or a single quotation mark. For example:
~]$ hostnamectl set-hostname "Stephen's notebook" --pretty

			

 ⁠3.2.4. Clear a Particular Host Name [Draft]

				To clear a particular host name and allow it to revert to the default, enter the following command as root with the relevant option:
~]# hostnamectl set-hostname "" [option...]

				 Where "" is a quoted empty string and where option is one or more of: --pretty, --static, and --transient.
			

 ⁠3.2.5. Changing Host Names Remotely [Draft]

				To execute a hostnamectl command on a remote system, use the -H, --host option as follows:
~]# hostnamectl set-hostname -H [username]@hostname

				 Where hostname is the remote host you wish to configure. The username is optional. The hostnamectl tool will use SSH to connect to the remote system.
			

 ⁠3.3. Additional Resources [Draft]

			The following sources of information provide additional resources regarding hostnamectl.
		

 ⁠3.3.1. Installed Documentation [Draft]

	
						hostnamectl(1) man page — Describes hostnamectl including the commands and command options.
					

	
						hostname(1) man page — Contains an explanation of the hostname and domainname commands.
					

	
						hostname(5) man page — Contains an explanation of the host name file, its contents, and use.
					

	
						hostname(7) man page — Contains an explanation of host name resolution.
					

	
						machine-info(5) man page — Describes the local machine information file and the environment variables it contains.
					

	
						machine-id(5) man page — Describes the local machine ID configuration file.
					

	
						systemd-hostnamed.service(8) man page — Describes the systemd-hostnamed system service used by hostnamectl.
					

 ⁠3.3.2. Online Documentation [Draft]

	http://www.freedesktop.org/wiki/Software/systemd/hostnamed
	
							Information on systemd-hostnamed.
						

 ⁠Chapter 4. Configure Network Bonding [Draft]

		Fedora allows administrators to bind multiple network interfaces together into a single, bonded, channel. Channel bonding enables two or more network interfaces to act as one, simultaneously increasing the bandwidth and providing redundancy.
	

 ⁠4.1. Understanding the Default Behavior of Master and Slave Interfaces [Draft]

			When controlling bonded slave interfaces using the NetworkManager daemon, and especially when fault finding, keep the following in mind:
				
						Starting the master interface does not automatically start the slave interfaces.
					

	
						Starting a slave interface always starts the master interface.
					

	
						Stopping the master interface also stops the slave interfaces.
					

	
						A master without slaves can start static IP connections.
					

	
						A master without slaves waits for slaves when starting DHCP connections.
					

	
						A master with a DHCP connection waiting for slaves completes when a slave with a carrier is added.
					

	
						A master with a DHCP connection waiting for slaves continues waiting when a slave without a carrier is added.
					

		

 ⁠4.2. Creating a Bond Connection Using a GUI [Draft]

			You can use the GNOME control-center utility to direct NetworkManager to create a Bond from two or more Wired or InfiniBand connections. It is not necessary to create the connections to be bonded first. They can be configured as part of the process to configure the bond. You must have the MAC addresses of the interfaces available in order to complete the configuration process.
		

 ⁠4.2.1. Establishing a Bond Connection [Draft]

 ⁠Procedure 4.1. Adding a New Bond Connection [Draft]

					You can configure a Bond connection by opening the Network window, clicking the plus symbol, and selecting Bond from the list.
				
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Click the plus symbol to open the selection list. Select Bond. The Editing Bond connection 1 window appears.
					

	
						On the Bond tab, click Add and select the type of interface you want to use with the bond connection. Click the Create button. Note that the dialog to select the slave type only comes up when you create the first slave; after that, it will automatically use that same type for all further slaves.
					

	
						The Editing bond0 slave 1 window appears. Use the Device MAC address drop-down menu to select the MAC address of the interface to be bonded. The first slave's MAC address will be used as the MAC address for the bond interface. If required, enter a clone MAC address to be used as the bond's MAC address. Click the Save button.
					

	
						The name of the bonded slave appears in the Bonded connections window. Click the Add button to add further slave connections.
					

	
						Review and confirm the settings and then click the Save button.
					

	
						Edit the bond-specific settings by referring to Section 4.2.1.1, “Configuring the Bond Tab” [Draft] below.
					

 ⁠Procedure 4.2. Editing an Existing Bond Connection [Draft]

					Follow these steps to edit an existing bond connection.
				
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Select the connection you wish to edit and click the Options button.
					

	
						Select the General tab.
					

	
						Configure the connection name, auto-connect behavior, and availability settings.
					

						Five settings in the Editing dialog are common to all connection types, see the General tab:
					
	
								Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the menu of the Network window.
							

	
								Automatically connect to this network when it is available — Select this box if you want NetworkManager to auto-connect to this connection when it is available. See Section 2.2.3, “Connecting to a Network Automatically” [Draft] for more information.
							

	
								All users may connect to this network — Select this box to create a connection available to all users on the system. Changing this setting may require root privileges. See Section 2.2.4, “System-wide and Private Connection Profiles” [Draft] for details.
							

	
								Automatically connect to VPN when using this connection — Select this box if you want NetworkManager to auto-connect to a VPN connection when it is available. Select the VPN from the drop-down menu.
							

	
								Firewall Zone — Select the firewall zone from the drop-down menu.
							

	
						Edit the bond-specific settings by referring to Section 4.2.1.1, “Configuring the Bond Tab” [Draft] below.
					

 ⁠Saving Your New (or Modified) Connection and Making Further Configurations

				Once you have finished editing your bond connection, click the Save button to save your customized configuration. To make NetworkManager apply the changes, power cycle the interface. See Section 2.2.1, “Connecting to a Network Using a GUI” [Draft] for information on using your new or altered connection.
			

				You can further configure an existing connection by selecting it in the Network window and clicking Options to return to the Editing dialog.
			

				Then, to configure:
			
	
						IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 2.2.10.4, “Configuring IPv4 Settings” [Draft]; or,
					

	
						IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 2.2.10.5, “Configuring IPv6 Settings” [Draft].
					

 ⁠4.2.1.1. Configuring the Bond Tab [Draft]

					If you have already added a new bond connection (refer to Procedure 4.1, “Adding a New Bond Connection” [Draft] for instructions), you can edit the Bond tab to set the load sharing mode and the type of link monitoring to use to detect failures of a slave connection.
				
	 Mode
	
								The mode that is used to share traffic over the slave connections which make up the bond. The default is Round-robin. Other load sharing modes, such as 802.3ad, can be selected by means of the drop-down list.
							

	 Link Monitoring
	
								The method of monitoring the slaves ability to carry network traffic.
							

					The following modes of load sharing are selectable from the Mode drop-down list:
				
	 Round-robin
	
								Sets a round-robin policy for fault tolerance and load balancing. Transmissions are received and sent out sequentially on each bonded slave interface beginning with the first one available. This mode might not work behind a bridge with virtual machines without additional switch configuration.
							

	 Active backup
	
								Sets an active-backup policy for fault tolerance. Transmissions are received and sent out via the first available bonded slave interface. Another bonded slave interface is only used if the active bonded slave interface fails. Note that this is the only mode available for bonds of InfiniBand devices.
							

	 XOR
	
								Sets an XOR (exclusive-or) policy. Transmissions are based on the selected hash policy. The default is to derive a hash by XOR of the source and destination MAC addresses multiplied by the modulo of the number of slave interfaces. In this mode traffic destined for specific peers will always be sent over the same interface. As the destination is determined by the MAC addresses this method works best for traffic to peers on the same link or local network. If traffic has to pass through a single router then this mode of traffic balancing will be suboptimal.
							

	 Broadcast
	
								Sets a broadcast policy for fault tolerance. All transmissions are sent on all slave interfaces. This mode might not work behind a bridge with virtual machines without additional switch configuration.
							

	 802.3ad
	
								Sets an IEEE 802.3ad dynamic link aggregation policy. Creates aggregation groups that share the same speed and duplex settings. Transmits and receives on all slaves in the active aggregator. Requires a network switch that is 802.3ad compliant.
							

	 Adaptive transmit load balancing
	
								Sets an adaptive Transmit Load Balancing (TLB) policy for fault tolerance and load balancing. The outgoing traffic is distributed according to the current load on each slave interface. Incoming traffic is received by the current slave. If the receiving slave fails, another slave takes over the MAC address of the failed slave. This mode is only suitable for local addresses known to the kernel bonding module and therefore cannot be used behind a bridge with virtual machines.
							

	 Adaptive load balancing
	
								Sets an Adaptive Load Balancing (ALB) policy for fault tolerance and load balancing. Includes transmit and receive load balancing for IPv4 traffic. Receive load balancing is achieved through ARP negotiation. This mode is only suitable for local addresses known to the kernel bonding module and therefore cannot be used behind a bridge with virtual machines.
							

					The following types of link monitoring can be selected from the Link Monitoring drop-down list. It is a good idea to test which channel bonding module parameters work best for your bonded interfaces.
				
	 MII (Media Independent Interface)
	
								The state of the carrier wave of the interface is monitored. This can be done by querying the driver, by querying MII registers directly, or by using ethtool to query the device. Three options are available:
							
	 Monitoring Frequency
	
											The time interval, in milliseconds, between querying the driver or MII registers.
										

	 Link up delay
	
											The time in milliseconds to wait before attempting to use a link that has been reported as up. This delay can be used if some gratuitous ARP requests are lost in the period immediately following the link being reported as “up”. This can happen during switch initialization for example.
										

	 Link down delay
	
											The time in milliseconds to wait before changing to another link when a previously active link has been reported as “down”. This delay can be used if an attached switch takes a relatively long time to change to backup mode.
										

	 ARP
	
								The address resolution protocol (ARP) is used to probe one or more peers to determine how well the link-layer connections are working. It is dependent on the device driver providing the transmit start time and the last receive time.
							

								Two options are available:
							
	 Monitoring Frequency
	
											The time interval, in milliseconds, between sending ARP requests.
										

	 ARP targets
	
											A comma separated list of IP addresses to send ARP requests to.
										

 ⁠4.3. Using the Command Line Interface (CLI) [Draft]

			A bond is created using the bonding kernel module and a special network interface called a channel bonding interface.
		

 ⁠4.3.1. Check if Bonding Kernel Module is Installed [Draft]

				In Fedora, the bonding module is not loaded by default. You can load the module by issuing the following command as root:
~]# modprobe --first-time bonding

				 This activation will not persist across system restarts. See the Fedora 20 System Administrator's Guide for an explanation of persistent module loading.
			

				To display information about the module, issue the following command:
~]$ modinfo bonding

				 See the modprobe(8) man page for more command options.
			

 ⁠4.3.2. Create a Channel Bonding Interface [Draft]

				To create a channel bonding interface, create a file in the /etc/sysconfig/network-scripts/ directory called ifcfg-bondN, replacing N with the number for the interface, such as 0.
			

				The contents of the file can be based on a configuration file for whatever type of interface is getting bonded, such as an Ethernet interface. The essential differences are that the DEVICE directive is bondN, replacing N with the number for the interface, and TYPE=Bond. The NM_CONTROLLED directive can be added to prevent NetworkManager from configuring this device.
			

 ⁠Example 4.1. Example ifcfg-bond0 Interface Configuration File [Draft]

					An example of a channel bonding interface.
				
DEVICE=bond0
NAME=bond0
TYPE=Bond
IPADDR=192.168.1.1
NETMASK=255.255.255.0
ONBOOT=yes
BOOTPROTO=none
BONDING_OPTS="bonding parameters separated by spaces"

					The NAME directive is useful for naming the connection profile in NetworkManager. ONBOOT says whether the profile should be started when booting (or more generally, when auto-connecting a device).
				

Put all Bonding Module Parameters in ifcfg-bondN Files [Draft]

					Parameters for the bonding kernel module must be specified as a space-separated list in the BONDING_OPTS="bonding parameters" directive in the ifcfg-bondN interface file. Do not specify options for the bonding device in /etc/modprobe.d/bonding.conf, or in the deprecated /etc/modprobe.conf file.
				

					The max_bonds parameter is not interface specific and should not be set when using ifcfg-bondN files with the BONDING_OPTS directive as this directive will cause the network scripts to create the bond interfaces as required.
				

					For further instructions and advice on configuring the bonding module and to view the list of bonding parameters, see Section 4.4, “Using Channel Bonding” [Draft].
				

 ⁠4.3.3. Creating SLAVE Interfaces [Draft]

				The channel bonding interface is the “master” and the interfaces to be bonded are referred to as the “slaves”. After the channel bonding interface is created, the network interfaces to be bound together must be configured by adding the MASTER and SLAVE directives to the configuration files of the slaves. The configuration files for each of the slave interfaces can be nearly identical.
			

 ⁠Example 4.2. Example Slave Interface Configuration File [Draft]

					For example, if two Ethernet interfaces are being channel bonded, eth0 and eth1, they can both look like the following example:
				
DEVICE=ethN
NAME=bond0-slave
TYPE=Ethernet
BOOTPROTO=none
ONBOOT=yes
MASTER=bond0
SLAVE=yes

					In this example, replace N with the numerical value for the interface. Note that if more than one profile or configuration file exists with ONBOOT=yes for an interface, they may race with each other and a plain TYPE=Ethernet profile may be activated instead of a bond slave.
				

 ⁠4.3.4. Activating a Channel Bond [Draft]

				To activate a bond, bring up all the slaves. As root, issue the following commands:
~]# /usr/sbin/ifup ifcfg-eth0
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/7)

				
~]# /usr/sbin/ifup ifcfg-eth1
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/8)

			

				Note that if editing interface files for interfaces which are currently “up”, set them down first as follows: /usr/sbin/ifdown ifcfg-ethN
 Then when complete, bring up all the slaves, which will bring up the bond (provided it was not set “down”).
			

				To make NetworkManager aware of the changes, issue a command for every changed interface as root:
~]# nmcli con load /etc/sysconfig/network-scripts/ifcfg-device

				 Alternatively, to reload all interfaces:
~]# nmcli con reload

				 The default behavior is for NetworkManager not to be aware of the changes and to continue using the old configuration data. The is set by the monitor-connection-files option in the NetworkManager.conf file. See the NetworkManager.conf(5) manual page for more information.
			

				To view the status of the bond interface, issue the following command:
~]# ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:e9:ce:d2 brd ff:ff:ff:ff:ff:ff
3: eth1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:38:a6:4c brd ff:ff:ff:ff:ff:ff
4: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT
 link/ether 52:54:00:38:a6:4c brd ff:ff:ff:ff:ff:ff

			

 ⁠4.3.5. Creating Multiple Bonds [Draft]

				In Fedora 20, for each bond a channel bonding interface is created including the BONDING_OPTS directive. This configuration method is used so that multiple bonding devices can have different configurations. To create multiple channel bonding interfaces, proceed as follows:
					
							Create multiple ifcfg-bondN files with the BONDING_OPTS directive; this directive will cause the network scripts to create the bond interfaces as required.
						

	
							Create, or edit existing, interface configuration files to be bonded and include the SLAVE directive.
						

	
							Assign the interfaces to be bonded, the slave interfaces, to the channel bonding interfaces by means of the MASTER directive.
						

			

 ⁠Example 4.3. Example multiple ifcfg-bondN interface configuration files [Draft]

					The following is an example of a channel bonding interface configuration file:
DEVICE=bondN
NAME=bondN
TYPE=Bond
IPADDR=192.168.1.1
NETMASK=255.255.255.0
ONBOOT=yes
BOOTPROTO=none
BONDING_OPTS="bonding parameters separated by spaces"

				

					In this example, replace N with the number for the bond interface. For example, to create two bonds create two configuration files, ifcfg-bond0 and ifcfg-bond1, with appropriate IP addresses.
				

				Create the interfaces to be bonded as per Example 4.2, “Example Slave Interface Configuration File” [Draft] and assign them to the bond interfaces as required using the MASTER=bondN directive. For example, continuing on from the example above, if two interfaces per bond are required, then for two bonds create four interface configuration files and assign the first two using MASTER=bond0 and the next two using MASTER=bond1.
			

 ⁠4.4. Using Channel Bonding [Draft]

			To enhance performance, adjust available module options to ascertain what combination works best. Pay particular attention to the miimon or arp_interval and the arp_ip_target parameters. See Section 4.4.1, “Bonding Module Directives” [Draft] for a list of available options and how to quickly determine the best ones for your bonded interface.
		

 ⁠4.4.1. Bonding Module Directives [Draft]

				It is a good idea to test which channel bonding module parameters work best for your bonded interfaces before adding them to the BONDING_OPTS="<bonding parameters>" directive in your bonding interface configuration file (ifcfg-bond0 for example). Parameters to bonded interfaces can be configured without unloading (and reloading) the bonding module by manipulating files in the sysfs file system.
			

				sysfs is a virtual file system that represents kernel objects as directories, files and symbolic links. sysfs can be used to query for information about kernel objects, and can also manipulate those objects through the use of normal file system commands. The sysfs virtual file system is mounted under the /sys/ directory. All bonding interfaces can be configured dynamically by interacting with and manipulating files under the /sys/class/net/ directory.
			

				In order to determine the best parameters for your bonding interface, create a channel bonding interface file such as ifcfg-bond0 by following the instructions in Section 4.3.2, “Create a Channel Bonding Interface” [Draft]. Insert the SLAVE=yes and MASTER=bond0 directives in the configuration files for each interface bonded to bond0. Once this is completed, you can proceed to testing the parameters.
			

				First, bring up the bond you created by running /usr/sbin/ifup bond<N> as root:
			
~]# /usr/sbin/ifup bond0

				If you have correctly created the ifcfg-bond0 bonding interface file, you will be able to see bond0 listed in the output of running ip link show as root:
			
~]# ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:e9:ce:d2 brd ff:ff:ff:ff:ff:ff
3: eth1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:38:a6:4c brd ff:ff:ff:ff:ff:ff
4: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT
 link/ether 52:54:00:38:a6:4c brd ff:ff:ff:ff:ff:ff

				To view all existing bonds, even if they are not up, run:
			
~]$ cat /sys/class/net/bonding_masters
bond0

				You can configure each bond individually by manipulating the files located in the /sys/class/net/bond<N>/bonding/ directory. First, the bond you are configuring must be taken down:
			
~]# /usr/sbin/ifdown bond0

				As an example, to enable MII monitoring on bond0 with a 1 second interval, run as root:
			
~]# echo 1000 > /sys/class/net/bond0/bonding/miimon

				To configure bond0 for balance-alb mode, run either:
			
~]# echo 6 > /sys/class/net/bond0/bonding/mode

				...or, using the name of the mode:
			
~]# echo balance-alb > /sys/class/net/bond0/bonding/mode

				After configuring options for the bond in question, you can bring it up and test it by running /usr/sbin/ifup bond<N>. If you decide to change the options, take the interface down, modify its parameters using sysfs, bring it back up, and re-test.
			

				Once you have determined the best set of parameters for your bond, add those parameters as a space-separated list to the BONDING_OPTS= directive of the /etc/sysconfig/network-scripts/ifcfg-bond<N> file for the bonding interface you are configuring. Whenever that bond is brought up (for example, by the system during the boot sequence if the ONBOOT=yes directive is set), the bonding options specified in the BONDING_OPTS will take effect for that bond.
			

				The following list provides the names of many of the more common channel bonding parameters, along with a description of what they do. For more information, see the brief descriptions for each parm in modinfo bonding output, or for more detailed information, see https://www.kernel.org/doc/Documentation/networking/bonding.txt.
			
Bonding Interface Parameters [Draft]
	 ad_select=<value>
	
							Specifies the 802.3ad aggregation selection logic to use. Possible values are:
								
										stable or 0 — Default setting. The active aggregator is chosen by largest aggregate bandwidth. Reselection of the active aggregator occurs only when all slaves of the active aggregator are down or if the active aggregator has no slaves.
									

	
										bandwidth or 1 — The active aggregator is chosen by largest aggregate bandwidth. Reselection occurs if:
											
													A slave is added to or removed from the bond;
												

	
													Any slave's link state changes;
												

	
													Any slave's 802.3ad association state changes;
												

	
													The bond's administrative state changes to up.
												

									

	
										count or 2 — The active aggregator is chosen by the largest number of slaves. Reselection occurs as described for the bandwidth setting above.
									

							 The bandwidth and count selection policies permit failover of 802.3ad aggregations when partial failure of the active aggregator occurs. This keeps the aggregator with the highest availability, either in bandwidth or in number of slaves, active at all times.
						

	 arp_interval=<time_in_milliseconds>
	
							Specifies, in milliseconds, how often ARP monitoring occurs.
						
Important [Draft]

								It is essential that both arp_interval and arp_ip_target parameters are specified, or, alternatively, the miimon parameter is specified. Failure to do so can cause degradation of network performance in the event that a link fails.
							

							If using this setting while in mode=0 or mode=1 (the two load-balancing modes), the network switch must be configured to distribute packets evenly across the NICs. For more information on how to accomplish this, see https://www.kernel.org/doc/Documentation/networking/bonding.txt.
						

							The value is set to 0 by default, which disables it.
						

	 arp_ip_target=<ip_address>[,<ip_address_2>,…<ip_address_16>]
	
							Specifies the target IP address of ARP requests when the arp_interval parameter is enabled. Up to 16 IP addresses can be specified in a comma separated list.
						

	 arp_validate=<value>
	
							Validate source/distribution of ARP probes; default is none. Other valid values are active, backup, and all.
						

	 downdelay=<time_in_milliseconds>
	
							Specifies (in milliseconds) how long to wait after link failure before disabling the link. The value must be a multiple of the value specified in the miimon parameter. The value is set to 0 by default, which disables it.
						

	 fail_over_mac=<value>
	
							Specifies whether active-backup mode should set all slaves to the same MAC address at enslavement (the traditional behavior), or, when enabled, perform special handling of the bond's MAC address in accordance with the selected policy. Possible values are:
								
										none or 0 — Default setting. This setting disables fail_over_mac, and causes bonding to set all slaves of an active-backup bond to the same MAC address at enslavement time.
									

	
										active or 1 — The “active”> fail_over_mac policy indicates that the MAC address of the bond should always be the MAC address of the currently active slave. The MAC address of the slaves is not changed; instead, the MAC address of the bond changes during a failover.
									

										This policy is useful for devices that cannot ever alter their MAC address, or for devices that refuse incoming broadcasts with their own source MAC (which interferes with the ARP monitor). The disadvantage of this policy is that every device on the network must be updated via gratuitous ARP, as opposed to the normal method of switches snooping incoming traffic to update their ARP tables. If the gratuitous ARP is lost, communication may be disrupted.
									

										When this policy is used in conjunction with the MII monitor, devices which assert link up prior to being able to actually transmit and receive are particularly susceptible to loss of the gratuitous ARP, and an appropriate updelay setting may be required.
									

	
										follow or 2 — The “follow” fail_over_mac policy causes the MAC address of the bond to be selected normally (normally the MAC address of the first slave added to the bond). However, the second and subsequent slaves are not set to this MAC address while they are in a backup role; a slave is programmed with the bond's MAC address at failover time (and the formerly active slave receives the newly active slave's MAC address).
									

										This policy is useful for multiport devices that either become confused or incur a performance penalty when multiple ports are programmed with the same MAC address.
									

						

	lacp_rate=<value>
	
							Specifies the rate at which link partners should transmit LACPDU packets in 802.3ad mode. Possible values are:
						
	
									slow or 0 — Default setting. This specifies that partners should transmit LACPDUs every 30 seconds.
								

	
									fast or 1 — Specifies that partners should transmit LACPDUs every 1 second.
								

	 miimon=<time_in_milliseconds>
	
							Specifies (in milliseconds) how often MII link monitoring occurs. This is useful if high availability is required because MII is used to verify that the NIC is active. To verify that the driver for a particular NIC supports the MII tool, type the following command as root:
						
~]# ethtool <interface_name> | grep "Link detected:"

							In this command, replace <interface_name> with the name of the device interface, such as eth0, not the bond interface. If MII is supported, the command returns:
						
Link detected: yes

							If using a bonded interface for high availability, the module for each NIC must support MII. Setting the value to 0 (the default), turns this feature off. When configuring this setting, a good starting point for this parameter is 100.
						
Important [Draft]

								It is essential that both arp_interval and arp_ip_target parameters are specified, or, alternatively, the miimon parameter is specified. Failure to do so can cause degradation of network performance in the event that a link fails.
							

	 mode=<value>
	
							Allows you to specify the bonding policy. The <value> can be one of:
						
	
									balance-rr or 0 — Sets a round-robin policy for fault tolerance and load balancing. Transmissions are received and sent out sequentially on each bonded slave interface beginning with the first one available.
								

	
									active-backup or 1 — Sets an active-backup policy for fault tolerance. Transmissions are received and sent out via the first available bonded slave interface. Another bonded slave interface is only used if the active bonded slave interface fails.
								

	
									balance-xor or 2 — Transmissions are based on the selected hash policy. The default is to derive a hash by XOR of the source and destination MAC addresses multiplied by the modulo of the number of slave interfaces. In this mode traffic destined for specific peers will always be sent over the same interface. As the destination is determined by the MAC addresses this method works best for traffic to peers on the same link or local network. If traffic has to pass through a single router then this mode of traffic balancing will be suboptimal.
								

	
									broadcast or 3 — Sets a broadcast policy for fault tolerance. All transmissions are sent on all slave interfaces.
								

	
									802.3ad or 4 — Sets an IEEE 802.3ad dynamic link aggregation policy. Creates aggregation groups that share the same speed and duplex settings. Transmits and receives on all slaves in the active aggregator. Requires a switch that is 802.3ad compliant.
								

	
									balance-tlb or 5 — Sets a Transmit Load Balancing (TLB) policy for fault tolerance and load balancing. The outgoing traffic is distributed according to the current load on each slave interface. Incoming traffic is received by the current slave. If the receiving slave fails, another slave takes over the MAC address of the failed slave. This mode is only suitable for local addresses known to the kernel bonding module and therefore cannot be used behind a bridge with virtual machines.
								

	
									balance-alb or 6 — Sets an Adaptive Load Balancing (ALB) policy for fault tolerance and load balancing. Includes transmit and receive load balancing for IPv4 traffic. Receive load balancing is achieved through ARP negotiation. This mode is only suitable for local addresses known to the kernel bonding module and therefore cannot be used behind a bridge with virtual machines.
								

	 primary=<interface_name>
	
							Specifies the interface name, such as eth0, of the primary device. The primary device is the first of the bonding interfaces to be used and is not abandoned unless it fails. This setting is particularly useful when one NIC in the bonding interface is faster and, therefore, able to handle a bigger load.
						

							This setting is only valid when the bonding interface is in active-backup mode. See https://www.kernel.org/doc/Documentation/networking/bonding.txt for more information.
						

	 primary_reselect=<value>
	
							Specifies the reselection policy for the primary slave. This affects how the primary slave is chosen to become the active slave when failure of the active slave or recovery of the primary slave occurs. This parameter is designed to prevent flip-flopping between the primary slave and other slaves. Possible values are:
						
	
									always or 0 (default) — The primary slave becomes the active slave whenever it comes back up.
								

	
									better or 1 — The primary slave becomes the active slave when it comes back up, if the speed and duplex of the primary slave is better than the speed and duplex of the current active slave.
								

	
									failure or 2 — The primary slave becomes the active slave only if the current active slave fails and the primary slave is up.
								

							The primary_reselect setting is ignored in two cases:
						
	
									If no slaves are active, the first slave to recover is made the active slave.
								

	
									When initially enslaved, the primary slave is always made the active slave.
								

							Changing the primary_reselect policy via sysfs will cause an immediate selection of the best active slave according to the new policy. This may or may not result in a change of the active slave, depending upon the circumstances
						

	 resend_igmp=range
	
							Specifies the number of IGMP membership reports to be issued after a failover event. One membership report is issued immediately after the failover, subsequent packets are sent in each 200ms interval.
						

							The valid range is 0 to 255; the default value is 1. A value of 0 prevents the IGMP membership report from being issued in response to the failover event.
						

							This option is useful for bonding modes balance-rr (mode 0), active-backup (mode 1), balance-tlb (mode 5) and balance-alb (mode 6), in which a failover can switch the IGMP traffic from one slave to another. Therefore a fresh IGMP report must be issued to cause the switch to forward the incoming IGMP traffic over the newly selected slave.
						

	 updelay=<time_in_milliseconds>
	
							Specifies (in milliseconds) how long to wait before enabling a link. The value must be a multiple of the value specified in the miimon parameter. The value is set to 0 by default, which disables it.
						

	 use_carrier=<number>
	
							Specifies whether or not miimon should use MII/ETHTOOL ioctls or netif_carrier_ok() to determine the link state. The netif_carrier_ok() function relies on the device driver to maintains its state with netif_carrier_on/off; most device drivers support this function.
						

							The MII/ETHTOOL ioctls tools utilize a deprecated calling sequence within the kernel. However, this is still configurable in case your device driver does not support netif_carrier_on/off.
						

							Valid values are:
						
	
									1 — Default setting. Enables the use of netif_carrier_ok().
								

	
									0 — Enables the use of MII/ETHTOOL ioctls.
								

Note [Draft]

								If the bonding interface insists that the link is up when it should not be, it is possible that your network device driver does not support netif_carrier_on/off.
							

	 xmit_hash_policy=<value>
	
							Selects the transmit hash policy used for slave selection in balance-xor and 802.3ad modes. Possible values are:
						
	
									0 or layer2 — Default setting. This parameter uses the XOR of hardware MAC addresses to generate the hash. The formula used is:
								
(<source_MAC_address> XOR <destination_MAC>) MODULO <slave_count>

									This algorithm will place all traffic to a particular network peer on the same slave, and is 802.3ad compliant.
								

	
									1 or layer3+4 — Uses upper layer protocol information (when available) to generate the hash. This allows for traffic to a particular network peer to span multiple slaves, although a single connection will not span multiple slaves.
								

									The formula for unfragmented TCP and UDP packets used is:
								
((<source_port> XOR <dest_port>) XOR
 ((<source_IP> XOR <dest_IP>) AND 0xffff)
 MODULO <slave_count>

									For fragmented TCP or UDP packets and all other IP protocol traffic, the source and destination port information is omitted. For non-IP traffic, the formula is the same as the layer2 transmit hash policy.
								

									This policy intends to mimic the behavior of certain switches; particularly, Cisco switches with PFC2 as well as some Foundry and IBM products.
								

									The algorithm used by this policy is not 802.3ad compliant.
								

	
									2 or layer2+3 — Uses a combination of layer2 and layer3 protocol information to generate the hash.
								

									Uses XOR of hardware MAC addresses and IP addresses to generate the hash. The formula is:
								
(((<source_IP> XOR <dest_IP>) AND 0xffff) XOR
 (<source_MAC> XOR <destination_MAC>))
 MODULO <slave_count>

									This algorithm will place all traffic to a particular network peer on the same slave. For non-IP traffic, the formula is the same as for the layer2 transmit hash policy.
								

									This policy is intended to provide a more balanced distribution of traffic than layer2 alone, especially in environments where a layer3 gateway device is required to reach most destinations.
								

									This algorithm is 802.3ad compliant.
								

 ⁠4.5. Using the NetworkManager Command Line Tool, nmcli [Draft]

			To create a bond, named mybond0, issue a command as follows:
~]$ nmcli con add type bond con-name mybond0 ifname mybond0 mode active-backup
Connection 'mybond0' (9301ff97-abbc-4432-aad1-246d7faea7fb) successfully added.

			 To add a slave interface, issue a command in the following form:
~]$ nmcli con add type bond-slave ifname ens7 master mybond0

			 To add additional slaves, repeat the previous command with a new interface, for example:
~]$ nmcli con add type bond-slave ifname ens3 master mybond0
Connection 'bond-slave-ens3-1' (50c59350-1531-45f4-ba04-33431c16e386) successfully added.

			 Note that as no con-name was given for the slaves, the name was derived from the interface name by prepending the type. At time of writing, nmcli only supports Ethernet slaves.
		

			In order to bring up a bond, the slaves must be brought up first as follows:
~]$ nmcli con up bond-slave-ens7
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/14)

			
~]$ nmcli con up bond-slave-ens3
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/15)

			 Now bring up the bond as follows:
~]$ nmcli con up bond-mybond0
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/16)

		

			See Section 2.4, “Using the NetworkManager Command Line Tool, nmcli” [Draft] for an introduction to nmcli
		

 ⁠4.6. Additional Resources [Draft]

			The following sources of information provide additional resources regarding network bonding.
		

 ⁠4.6.1. Installed Documentation [Draft]

	
						nmcli(1) man page — Describes NetworkManager's command‐line tool.
					

	
						nmcli-examples(5) man page — Gives examples of nmcli commands.
					

	
						nm-settings(5) man page — Description of settings and parameters of NetworkManager connections.
					

 ⁠4.6.2. Installable Documentation [Draft]

	
						/usr/share/doc/kernel-doc/Documentation/ — This directory, which is provided by the kernel-doc package, contains information on bonding. Before accessing the kernel documentation, you must run the following command as root:
					
~]# yum install kernel-doc

						/usr/share/doc/kernel-doc-version/Documentation/networking/bonding.txt — Describes the Linux bonding driver.
					

 ⁠4.6.3. Online Documentation [Draft]

					Fedora 20 System Administrator's Reference Guide
	
								Lists all the configurable parameters in an Ethernet interface configuration file.
							

	Fedora 20 System Administrator's Guide
	
								Explains the use of kernel module capabilities.
							

			

 ⁠Chapter 5. Configure Network Teaming [Draft]

 ⁠5.1. Understanding Network Teaming [Draft]

			The combining or aggregating together of network links in order to provide a logical link with higher throughput, or to provide redundancy, is known by many names such as “channel bonding”, “Ethernet bonding”, “port trunking”, “channel teaming”, “NIC teaming”, “link aggregation”, and so on. This concept as originally implemented in the Linux kernel is widely referred to as “bonding”. The term Network Teaming has been chosen to refer to this new implementation of the concept. The existing bonding driver is unaffected, Network Teaming is offered as an alternative and does not replace bonding in Fedora.
		

			Network Teaming, or Team, is designed to implement the concept in a different way by providing a small kernel driver to implement the fast handling of packet flows, and various user-space applications to do everything else in user space. The driver has an Application Programming Interface (API), referred to as “Team Netlink API”, which implements Netlink communications. User-space applications can use this API to communicate with the driver. A library, referred to as “lib”, has been provided to do user space wrapping of Team Netlink communications and RT Netlink messages. An application daemon, teamd, which uses Libteam lib is also provided. One instance of teamd can control one instance of the Team driver. The daemon implements the load-balancing and active-backup logic, such as round-robin, by using additional code referred to as “runners”. By separating the code in this way, the Network Teaming implementation presents an easily extensible and scalable solution for load-balancing and redundancy requirements. For example, custom runners can be relatively easily written to implement new logic via teamd, and even teamd is optional, users can write their own application to use libteam.
		

			A tool to control a running instance of teamd using D-bus is provided by teamdctl. It provides a D-Bus wrapper around the teamd D-Bus API. By default, teamd listens and communicates using Unix Domain Sockets but still monitors D-Bus. This is to insure that teamd can be used in environments where D-Bus is not present or not yet loaded. For example, when booting over teamd links D-Bus would not yet be loaded. The teamdctl tool can be used during run time to read the configuration, the state of link-watchers, check and change the state of ports, add and remove ports, and to change ports between active and backup states.
		

			Team Netlink API communicates with user-space applications using Netlink messages. The user-space library libteam does not directly interact with the API, but uses libnl or teamnl to interact with the driver API.
		

			To sum up, the instances of Team driver, running in the kernel, do not get configured or controlled directly. All configuration is done with the aid of user space applications, such as the teamd application. The application then directs the kernel driver part accordingly.
		

 ⁠5.2. Comparison of Network Teaming to Bonding [Draft]

 ⁠Table 5.1. A Comparison of Features in Bonding and Team [Draft]
	Feature	Bonding	Team
	broadcast Tx policy	Yes	Yes
	round-robin Tx policy	Yes	Yes
	active-backup Tx policy	Yes	Yes
	LACP (802.3ad) support	Yes (passive only)	Yes
	Hash-based Tx policy	Yes	Yes
	User can set hash function	No	Yes
	Tx load-balancing support (TLB)	Yes	Yes
	LACP hash port select	Yes	Yes
	load-balancing for LACP support	No	Yes
	Ethtool link monitoring	Yes	Yes
	ARP link monitoring	Yes	Yes
	NS/NA (IPv6) link monitoring	No	Yes
	ports up/down delays	Yes	Yes
	port priorities and stickiness (“primary” option enhancement)	No	Yes
	separate per-port link monitoring setup	No	Yes
	multiple link monitoring setup	Limited	Yes
	lockless Tx/Rx path	No (rwlock)	Yes (RCU)
	VLAN support	Yes	Yes
	user-space runtime control	Limited	Full
	Logic in user-space	No	Yes
	Extensibility	Hard	Easy
	Modular design	No	Yes
	Performance overhead	Low	Very Low
	D-Bus interface	No	Yes
	multiple device stacking	Yes	Yes
	zero config using LLDP	No	(in planning)
	NetworkManager support	Yes	Yes

 ⁠5.3. Understanding the Default Behavior of Master and Slave Interfaces [Draft]

			When controlling teamed port interfaces using the NetworkManager daemon, and especially when fault finding, keep the following in mind:
				
						Starting the master interface does not automatically start the port interfaces.
					

	
						Starting a port interface always starts the master interface.
					

	
						Stopping the master interface also stops the port interfaces.
					

	
						A master without ports can start static IP connections.
					

	
						A master without ports waits for ports when starting DHCP connections.
					

	
						A master with a DHCP connection waiting for ports completes when a port with a carrier is added.
					

	
						A master with a DHCP connection waiting for ports continues waiting when a port without a carrier is added.
					

		

 ⁠5.4. Understanding the Network Teaming Daemon and the "Runners" [Draft]

			The Team daemon, teamd, uses libteam to control one instance of the team driver. This instance of the team driver adds instances of a hardware device driver to form a “team” of network links. The team driver presents a network interface, team0 for example, to the other parts of the kernel. The interfaces created by instances of the team driver are given names such as team0, team1, and so forth in the documentation. This is for ease of understanding and other names can be used. The logic common to all methods of teaming is implemented by teamd; those functions that are unique to the different load sharing and backup methods, such as round-robin, are implemented by separate units of code referred to as “runners”. Because words such as “module” and “mode” already have specific meanings in relation to the kernel, the word “runner” was chosen to refer to these units of code. The user specifies the runner in the JSON format configuration file and the code is then compiled into an instance of teamd when the instance is created. A runner is not a plug-in because the code for a runner is compiled into an instance of teamd as it is being created. Code could be created as a plug-in for teamd should the need arise.
		

			The following runners are available at time of writing.
				
						broadcast (data is transmitted over all ports)
					

	
						round-robin (data is transmitted over all ports in turn)
					

	
						active-backup (one port or link is used while others are kept as a backup)
					

	
						loadbalance (with active Tx load balancing and BPF-based Tx port selectors)
					

	
						lacp (implements the 802.3ad Link Aggregation Control Protocol)
					

		

			In addition, the following link-watchers are available:
				
						ethtool (Libteam lib uses ethtool to watch for link state changes). This is the default if no other link-watcher is specified in the configuration file.
					

	
						arp_ping (The arp_ping utility is used to monitor the presence of a far-end hardware address using ARP packets.)
					

	
						nsna_ping (Neighbor Advertisements and Neighbor Solicitation from the IPv6 Neighbor Discovery protocol are used to monitor the presence of a neighbor's interface)
					

			 There are no restrictions in the code to prevent a particular link-watcher from being used with a particular runner, however when using the lacp runner, ethtool is the only recommended link-watcher.
		

 ⁠5.5. Install the Network Teaming Daemon [Draft]

			The networking teaming daemon, teamd, is not installed by default. To install teamd, issue the following command as root:
~]# yum install teamd

		

 ⁠5.6. Converting a Bond to a Team [Draft]

			It is possible to convert existing bonding configuration files to team configuration files using the bond2team tool. It can convert bond configuration files in ifcfg format to team configuration files in either ifcfg or JSON format. Note that firewall rules, alias interfaces, and anything that might be tied to the original interface name can break after the renaming because the tool will only change the ifcfg file, nothing else.
		

			To see some examples of the command format, issue the following command:
~]$ bond2team --examples

			 New files will be created in a directory whose name starts with /tmp/bond2team.XXXXXX/, where XXXXXX is a random string. After creating the new configuration files, move the old bonding files to a backup folder and then move the new files to the /etc/sysconfig/network-scripts/ directory. See the bond2team(1) man page for further details.
		

 ⁠5.7. Selecting Interfaces to Use as Ports for a Network Team [Draft]

			To view the available interfaces, issue the following command:
~]$ ip link show
1: lo: <LOOPBACK,UP,LOWER_UP > mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: em1: <BROADCAST,MULTICAST,UP,LOWER_UP > mtu 1500 qdisc pfifo_fast state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:6a:02:8a brd ff:ff:ff:ff:ff:ff
3: em2: <BROADCAST,MULTICAST,UP,LOWER_UP > mtu 1500 qdisc pfifo_fast state UP mode DEFAULT qlen 1000
link/ether 52:54:00:9b:6d:2a brd ff:ff:ff:ff:ff:ff

			 From the available interfaces, determine which are suitable for adding to your network team and then proceed to Section 5.8, “Selecting Network Team Configuration Methods” [Draft]
		
Note [Draft]

				The Team developers prefer the term “port” rather than “slave”, however NetworkManager uses the term “team-slave” to refer to interfaces that make up a team.
			

 ⁠5.8. Selecting Network Team Configuration Methods [Draft]

			To configure a network team using a graphical user interface, see Section 5.9, “Creating a Network Team Using a GUI” [Draft]
		

			To create a network team using the Team daemon, teamd, proceed to Section 5.10.1, “Creating a Network Team Using teamd” [Draft].
		

			To create a network team using configuration files, proceed to Section 5.10.2, “Creating a Network Team Using ifcfg Files” [Draft].
		

			To create a network team using the command-line tool, nmcli, proceed to Section 5.13, “Configure Network Teaming Using nmcli” [Draft].
		

 ⁠5.9. Creating a Network Team Using a GUI [Draft]

 ⁠5.9.1. Establishing a Team Connection [Draft]

				You can use the GNOME control-center utility to direct NetworkManager to create a team from two or more Wired or InfiniBand connections. It is not necessary to create the connections to be teamed first. They can be configured as part of the process to configure the team. You must have the MAC addresses of the interfaces available in order to complete the configuration process.
			

 ⁠Procedure 5.1. Adding a New Team Connection [Draft]

					You can configure a team connection by opening the Network window, clicking the plus symbol, and selecting Team from the list.
				
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Click the plus symbol to open the selection list. Select Team. The Editing Team Connection 1 window appears.
					

	
						On the Team tab, click Add and select the type of interface you want to use with the team connection. Click the Create button. Note that the dialog to select the port type only comes up when you create the first port; after that, it will automatically use that same type for all further ports.
					

	
						The Editing team0 port 1 window appears. Fill in the MAC address of the first interface to be added to the team.
					

	
						If custom port settings are to be applied, click on the Team Port tab and enter a JSON configuration string or import it from a file.
					

	
						Click the Save button.
					

	
						The name of the teamed port appears in the Teamed connections window. Click the Add button to add further port connections.
					

	
						Review and confirm the settings and then click the Save button.
					

	
						Edit the team-specific settings by referring to Section 5.9.1.1, “Configuring the Team Tab” [Draft] below.
					

 ⁠Procedure 5.2. Editing an Existing Team Connection [Draft]

					Follow these steps to edit an existing bond connection.
				
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Select the connection you wish to edit and click the Options button.
					

	
						Select the General tab.
					

	
						Configure the connection name, auto-connect behavior, and availability settings.
					

						Five settings in the Editing dialog are common to all connection types, see the General tab:
					
	
								Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the menu of the Network window.
							

	
								Automatically connect to this network when it is available — Select this box if you want NetworkManager to auto-connect to this connection when it is available. See Section 2.2.3, “Connecting to a Network Automatically” [Draft] for more information.
							

	
								All users may connect to this network — Select this box to create a connection available to all users on the system. Changing this setting may require root privileges. See Section 2.2.4, “System-wide and Private Connection Profiles” [Draft] for details.
							

	
								Automatically connect to VPN when using this connection — Select this box if you want NetworkManager to auto-connect to a VPN connection when it is available. Select the VPN from the drop-down menu.
							

	
								Firewall Zone — Select the firewall zone from the drop-down menu.
							

	
						Edit the team-specific settings by referring to Section 5.9.1.1, “Configuring the Team Tab” [Draft] below.
					

 ⁠Saving Your New (or Modified) Connection and Making Further Configurations

				Once you have finished editing your team connection, click the Save button to save your customized configuration. To make NetworkManager apply the changes, power cycle the interface. See Section 2.2.1, “Connecting to a Network Using a GUI” [Draft] for information on using your new or altered connection.
			

				You can further configure an existing connection by selecting it in the Network window and clicking Options to return to the Editing dialog.
			

				Then, to configure:
			
	
						IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 2.2.10.4, “Configuring IPv4 Settings” [Draft]; or,
					

	
						IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 2.2.10.5, “Configuring IPv6 Settings” [Draft].
					

 ⁠5.9.1.1. Configuring the Team Tab [Draft]

					If you have already added a new team connection you can enter a custom JSON configuration string in the text box or import a configuration file. Click Save to apply the JSON configuration to the team interface.
				

					For examples of JSON strings, see Section 5.12, “Configure teamd Runners” [Draft]
				

					See Procedure 5.1, “Adding a New Team Connection” [Draft] for instructions on how to add a new team.
				

 ⁠5.10. Configure a Network Team Using the Command Line [Draft]

 ⁠5.10.1. Creating a Network Team Using teamd [Draft]

				To create a network team, a JSON format configuration file is required for the virtual interface that will serve as the interface to the team of ports or links. A quick way is to copy the example configuration files and then edit them using an editor running with root privileges. To list the available example configurations, enter the following command:
~]$ ls /usr/share/doc/teamd-*/example_configs/
activebackup_arp_ping_1.conf activebackup_multi_lw_1.conf loadbalance_2.conf
activebackup_arp_ping_2.conf activebackup_nsna_ping_1.conf loadbalance_3.conf
activebackup_ethtool_1.conf broadcast.conf random.conf
activebackup_ethtool_2.conf lacp_1.conf roundrobin_2.conf
activebackup_ethtool_3.conf loadbalance_1.conf roundrobin.conf

				 To view one of the included files, such as activebackup_ethtool_1.conf, enter the following command:
~]$ cat /usr/share/doc/teamd-*/example_configs/activebackup_ethtool_1.conf
{
	"device":	"team0",
	"runner":	{"name": "activebackup"},
	"link_watch":	{"name": "ethtool"},
	"ports":	{
		"eth1": {
			"prio": -10,
			"sticky": true
		},
		"eth2": {
			"prio": 100
		}
	}
}

				 Create a working configurations directory to store teamd configuration files. For example, as normal user, enter a command with the following format:
~]$ mkdir ~/teamd_working_configs

				 Copy the file you have chosen to your working directory and edit it as necessary. As an example, you could use a command with the following format:
~]$ cp /usr/share/doc/teamd-*/example_configs/activebackup_ethtool_1.conf \ ~/teamd_working_configs/activebackup_ethtool_1.conf

				 To edit the file to suit your environment, for example to change the interfaces to be used as ports for the network team, open the file for editing as follows:
~]$ vi ~/teamd_working_configs/activebackup_ethtool_1.conf

				 Make any necessary changes and save the file. See the vi(1) man page for help on using the vi editor or use your preferred editor.
			

				Note that it is essential that the interfaces to be used as ports within the team must not be active, that is to say, they must be “down”, when adding them into a team device. To check their status, issue the following command:
~]$ ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:d5:f7:d4 brd ff:ff:ff:ff:ff:ff
3: em2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:d8:04:70 brd ff:ff:ff:ff:ff:ff

				 In this example we see that both the interfaces we plan to use are “UP”.
			

				To take down an interface, issue a command as root in the following format:
~]# ip link set down em1

				 Repeat for each interface as necessary.
			

				To create a team interface based on the configuration file, as root user, change to the working configurations directory (teamd_working_configs in this example):
~]# cd /home/userteamd_working_configs

				 Then issue a command in the following format:
~]# teamd -g -f activebackup_ethtool_1.conf -d
Using team device "team0".
Using PID file "/var/run/teamd/team0.pid"
Using config file "/home/user/teamd_working_configs/activebackup_ethtool_1.conf"

				 The -g option is for debug messages, -f option is to specify the configuration file to load, and the -d option is to make the process run as a daemon after startup. See the teamd(8) man page for other options.
			

				To check the status of the team, issue the following command as root:
~]# teamdctl team0 state
setup:
 runner: activebackup
ports:
 em1
 link watches:
 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up
 em2
 link watches:
 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up
runner:
 active port: em1

			

				To apply an address to the network team interface, team0, issue a command as root in the following format:
~]# ip addr add 192.168.23.2/24 dev team0

			

				To check the IP address of a team interface, issue a command as follows:
~]$ ip addr show team0
4: team0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
 link/ether 16:38:57:60:20:6f brd ff:ff:ff:ff:ff:ff
 inet 192.168.23.2/24 scope global team0
 valid_lft forever preferred_lft forever
 inet6 2620:52:0:221d:1438:57ff:fe60:206f/64 scope global dynamic
 valid_lft 2591880sec preferred_lft 604680sec
 inet6 fe80::1438:57ff:fe60:206f/64 scope link
 valid_lft forever preferred_lft forever

			

				To activate the team interface, or to bring it “up”, issue a command as root in the following format:
~]# ip link set dev team0 up

			

				To temporarily deactivate the team interface, or to take it “down”, issue a command as root in the following format:
~]# ip link set dev team0 down

			

				To terminate, or kill, an instance of the team daemon, as root user, issue a command in the following format:
~]# teamd -t team0 -k

				 The -k option is to specify that the instance of the daemon associated with the device team0 is to be killed. See the teamd(8) man page for other options.
			

				For help on command-line options for teamd, issue the following command:
~]$ teamd -h

				 In addition, see the teamd(8) man page.
			

 ⁠5.10.2. Creating a Network Team Using ifcfg Files [Draft]

				To create a networking team using ifcfg files, create a file in the /etc/sysconfig/network-scripts/ directory as follows:
DEVICE=team0
DEVICETYPE=Team
ONBOOT=yes
BOOTPROTO=none
IPADDR=192.168.11.1
NETMASK=255.255.255.0
TEAM_CONFIG='{"runner": {"name": "activebackup"}, "link_watch": {"name": "ethtool"}}'

				 This creates the interface to the team, in other words, this is the master.
			

				To create a port to be a member of team0, create one or more files in the /etc/sysconfig/network-scripts/ directory as follows:
DEVICE=eth1
HWADDR=D4:85:64:01:46:9E
DEVICETYPE=TeamPort
ONBOOT=yes
TEAM_MASTER=team0
TEAM_PORT_CONFIG='{"prio": 100}'

				 Add additional port interfaces similar to the above as required, changing the DEVICE and HWADDR field to match the ports (the network devices) being added. If port priority is not specified by prio it defaults to 0; it accepts negative and positive values in the range -32,767 to +32,767.
			

				Specifying the hardware or MAC address using the HWADDR directive will influence the device naming procedure. This is explained in Chapter 8, Consistent Network Device Naming [Draft].
			

				To bring up the network team, issue the following command as root:
~]# ifup team0

				 To view the network team, issue the following command:
~]$ ip link show

			

 ⁠5.10.3. Add a Port to a Network Team Using iputils [Draft]

				To add a port em1 to a network team team0, using the ip utility, issue the following commands as root:
~]# ip link set dev em1 down
~]# ip link set dev em1 master team0

				 Add additional ports as required. Team driver will bring ports up automatically.
			

 ⁠5.10.4. Listing the ports of a Team Using teamnl [Draft]

				To view or list the ports in a network team, using the teamnl utility, issue the following command as root:
~]# teamnl team0 ports
em2: up 100 fullduplex
em1: up 100 fullduplex

			

 ⁠5.10.5. Configuring Options of a Team Using teamnl [Draft]

				To view or list all currently available options, using the teamnl utility, issue the following command as root:
~]# teamnl team0 options

				 To configure a team to use active backup mode, issue the following command as root:
~]# teamnl team0 setoption mode activebackup

			

 ⁠5.10.6. Add an Address to a Network Team Using iputils [Draft]

				To add an address to a team team0, using the ip utility, issue the following command as root:
~]# ip addr add 192.168.252.2/24 dev team0

			

 ⁠5.10.7. Bring up an Interface to a Network Team Using iputils [Draft]

				To activate or “bring up” an interface to a network team, team0, using the ip utility, issue the following command as root:
~]# ip link set team0 up

			

 ⁠5.10.8. Viewing the Active Port Options of a Team Using teamnl [Draft]

				To view or list the activeport option in a network team, using the teamnl utility, issue the following command as root:
~]# teamnl team0 getoption activeport
0

			

 ⁠5.10.9. Setting the Active Port Options of a Team Using teamnl [Draft]

				To set the activeport option in a network team, using the teamnl utility, issue the following command as root:
~]# teamnl team0 setoption activeport 5

				 To check the change in team port options, issue the following command as root:
~]# teamnl team0 getoption activeport
5

			

 ⁠5.11. Controlling teamd with teamdctl [Draft]

			In order to query a running instance of teamd for statistics or configuration information, or to make changes, the control tool teamdctl is used.
		

			To view the current team state of a team team0, enter the following command as root:
~]# teamdctl team0 state view

			 For a more verbose output:
~]# teamdctl team0 state view -v

		

			For a complete state dump in JSON format (useful for machine processing) of team0, use the following command:
~]# teamdctl team0 state dump

		

			For a configuration dump in JSON format of team0, use the following command:
~]# teamdctl team0 config dump

		

			To view the configuration of a port em1, that is part of a team team0, enter the following command:
~]# teamdctl team0 port config dump em1

		

 ⁠5.11.1. Add a Port to a Network Team [Draft]

				To add a port em1 to a network team team0, issue the following command as root:
~]# teamdctl team0 port add em1

			

 ⁠5.11.2. Remove a Port From a Network Team [Draft]

				To remove an interface em1 from a network team team0, issue the following command as root:
~]# teamdctl team0 port remove em1

			

 ⁠5.11.3. Apply a Configuration to a Port in a Network Team [Draft]

				To apply a JSON format configuration to a port em1 in a network team team0, issue a command as root in the following format:
~]# teamdctl team0 port config update em1 JSON-config-string

				 Where JSON-config-string is the configuration as a string of text in JSON format. This will update the configuration of the port using the JSON format string supplied. An example of a valid JSON string for configuring a port would be the following:

{
 "prio": -10,
 "sticky": true
}

				 Use single quotes around the JSON configuration string and omit the line breaks.
			

				Note that the old configuration will be overwritten and that any options omitted will be reset to the default values. See the teamdctl(8) man page for more team daemon control tool command examples.
			

 ⁠5.11.4. View the Configuration of a Port in a Network Team [Draft]

				To copy the configuration of a port em1 in a network team team0, issue the following command as root:
~]# teamdctl team0 port config dump em1

				 This will dump the JSON format configuration of the port to standard output.
			

 ⁠5.12. Configure teamd Runners [Draft]

			Runners are units of code which are compiled into the Team daemon when an instance of the daemon is created. For an introduction to the teamd runners, see Section 5.4, “Understanding the Network Teaming Daemon and the "Runners"” [Draft].
		

 ⁠5.12.1. Configure the broadcast Runner [Draft]

				To configure the broadcast runner, using an editor as root, add the following to the team JSON format configuration file:

{
 "device": "team0",
 "runner": {"name": "broadcast"},
 "ports": {"em1": {}, "em2": {}}
}

			

				Please see the teamd.conf(5) man page for more information.
			

 ⁠5.12.2. Configure the random Runner [Draft]

				The random runner behaves similarly to the roundrobin runner.
			

				To configure the random runner, using an editor as root, add the following to the team JSON format configuration file:

{
 "device": "team0",
 "runner": {"name": "random"},
 "ports": {"em1": {}, "em2": {}}
}

			

				Please see the teamd.conf(5) man page for more information.
			

 ⁠5.12.3. Configure the roundrobin Runner [Draft]

				To configure the roundrobin runner, using an editor as root, add the following to the team JSON format configuration file:

{
 "device": "team0",
 "runner": {"name": "roundrobin"},
 "ports": {"em1": {}, "em2": {}}
}

				 A very basic configuration for roundrobin.
			

				Please see the teamd.conf(5) man page for more information.
			

 ⁠5.12.4. Configure the activebackup Runner [Draft]

				The active backup runner can use all of the link-watchers to determine the status of links in a team. Any one of the following examples can be added to the team JSON format configuration file:
			

				

{
 "device": "team0",
 "runner": {
 "name": "activebackup"
 },
 "link_watch": {
 "name": "ethtool"
 },
 "ports": {
 "em1": {
 "prio": -10,
 "sticky": true
 },
 "em2": {
 "prio": 100
 }
 }
}

				 This example configuration uses the active-backup runner with ethtool as the link watcher. Port em2 has higher priority. The sticky flag ensures that if em1 becomes active, it stays active as long as the link remains up.
			

				

{
 "device": "team0",
 "runner": {
 "name": "activebackup"
 },
 "link_watch": {
 "name": "ethtool"
 },
 "ports": {
 "em1": {
 "prio": -10,
 "sticky": true,
 "queue_id": 4
 },
 "em2": {
 "prio": 100
 }
 }
}

				 This example configuration adds a queue ID of 4. It uses active-backup runner with ethtool as the link watcher. Port em2 has higher priority. But the sticky flag ensures that if em1 becomes active, it will stay active as long as the link remains up.
			

				To configure the activebackup runner using ethtool as the link watcher and applying a delay, using an editor as root, add the following to the team JSON format configuration file:

{
 "device": "team0",
 "runner": {
 "name": "activebackup"
 },
 "link_watch": {
 "name": "ethtool",
 "delay_up": 2500,
 "delay_down": 1000
 },
 "ports": {
 "em1": {
 "prio": -10,
 "sticky": true
 },
 "em2": {
 "prio": 100
 }
 }
}

				 This example configuration uses the active-backup runner with ethtool as the link watcher. Port em2 has higher priority. But the sticky flag ensures that if em1 becomes active, it stays active while the link remains up. Link changes are not propagated to the runner immediately, but delays are applied.
			

				Please see the teamd.conf(5) man page for more information.
			

 ⁠5.12.5. Configure the loadbalance Runner [Draft]

				This runner can be used for two types of load balancing, active and passive. In active mode, constant re-balancing of traffic is done by using statistics of recent traffic to share out traffic as evenly as possible. In static mode, streams of traffic are distributed randomly across the available links. This has a speed advantage due to lower processing overhead. In high volume traffic applications this is often preferred as traffic usually consists of multiple stream which will be distributed randomly between the available links, in his way load sharing is accomplished without intervention by teamd.
			

				To configure the loadbalance runner for passive transmit (Tx) load balancing, using an editor as root, add the following to the team JSON format configuration file:

{
 "device": "team0",
 "runner": {
 "name": "loadbalance",
 "tx_hash": ["eth", "ipv4", "ipv6"]
 },
 "ports": {"em1": {}, "em2": {}}
}

				 Configuration for hash-based passive transmit (Tx) load balancing.
			

				To configure the loadbalance runner for active transmit (Tx) load balancing, using an editor as root, add the following to the team JSON format configuration file:

{
 "device": "team0",
 "runner": {
 "name": "loadbalance",
 "tx_hash": ["eth", "ipv4", "ipv6"],
 "tx_balancer": {
 "name": "basic"
 }
 },
 "ports": {"em1": {}, "em2": {}}
}

				 Configuration for active transmit (Tx) load balancing using basic load balancer.
			

				Please see the teamd.conf(5) man page for more information.
			

 ⁠5.12.6. Configure the LACP (802.3ad) Runner [Draft]

				To configure the LACP runner using ethtool as a link watcher, using an editor as root, add the following to the team JSON format configuration file:

{
 "device": "team0",
 "runner": {
 "name": "lacp",
 "active": true,
 "fast_rate": true,
 "tx_hash": ["eth", "ipv4", "ipv6"]
 },
 "link_watch": {"name": "ethtool"},
 "ports": {"em1": {}, "em2": {}}
}

				 Configuration for connection to a link aggregation control protocol (LACP) capable counterpart. The LACP runner should use ethtool to monitor the status of a link. It does not make sense to use any other link monitoring method besides the ethtool because, for example in the case of arp_ping, the link would never come up. The reason is that the link has to be established first and only after that can packets, ARP included, go through. Using ethtool prevents this because it monitors each link layer individually.
			

				Active load balancing is possible with this runner in the same way as it is done for the loadbalance runner. To enable active transmit (Tx) load balancing, add the following section:
"tx_balancer": {
 "name": "basic"
}

			

				Please see the teamd.conf(5) man page for more information.
			

 ⁠5.12.7. Configure Monitoring of the Link State [Draft]

				The following methods of link state monitoring are available. To implement one of the methods, add the JSON format string to the team JSON format configuration file using an editor running with root privileges.
			

 ⁠5.12.7.1. Configure Ethtool for link-state Monitoring [Draft]

					To add or edit an existing delay, in milliseconds, between the link coming up and the runner being notified about it, add or edit a section as follows:

"link_watch": {
 "name": "ethtool",
 "delay_up": 2500
}

				

					To add or edit an existing delay, in milliseconds, between the link going down and the runner being notified about it, add or edit a section as follows:

"link_watch": {
 "name": "ethtool",
 "delay_down": 1000
}

				

 ⁠5.12.7.2. Configure ARP Ping for Link-state Monitoring [Draft]

					The team daemon teamd sends an ARP REQUEST to an address at the remote end of the link in order to determine if the link is up. The method used is the same as the arping utility but it does not use that utility.
				

					Prepare a file containing the new configuration in JSON format similar to the following example:

{
 "device": "team0",
 "runner": {"name": "activebackup"},
 "link_watch":{
 "name": "arp_ping",
 "interval": 100,
 "missed_max": 30,
 "source_host": "192.168.23.2",
 "target_host": "192.168.23.1"
 },
 "ports": {
 "em1": {
 "prio": -10,
 "sticky": true
 },
 "em2": {
 "prio": 100
 }
 }
}

					 This configuration uses arp_ping as the link watcher. The missed_max option is a limit value of the maximum allowed number of missed replies (ARP replies for example). It should be chosen in conjunction with the interval option in order to determine the total time before a link is reported as down.
				

					To load a new configuration for a team port em2, from a file containing a JSON configuration, issue the following command as root:
~]# port config update em2 JSON-config-file

					 Note that the old configuration will be overwritten and that any options omitted will be reset to the default values. See the teamdctl(8) man page for more team daemon control tool command examples.
				

 ⁠5.12.7.3. Configure IPv6 NA/NS for Link-state Monitoring [Draft]

					

{
 "device": "team0",
 "runner": {"name": "activebackup"},
 "link_watch": {
 "name": "nsna_ping",
 "interval": 200,
 "missed_max": 15,
 "target_host": "fe80::210:18ff:feaa:bbcc"
 },
 "ports": {
 "em1": {
 "prio": -10,
 "sticky": true
 },
 "em2": {
 "prio": 100
 }
 }
}

				

					To configure the interval between sending NS/NA packets, add or edit a section as follows:

"link_watch": {
 "name": "nsna_ping",
 "interval": 200
}

					 Value is positive number in milliseconds. It should be chosen in conjunction with the missed_max option in order to determine the total time before a link is reported as down.
				

					To configure the maximum number of missed NS/NA reply packets to allow before reporting the link as down, add or edit a section as follows:

"link_watch": {
 "name": "nsna_ping",
 "missed_max": 15
}

					 Maximum number of missed NS/NA reply packets. If this number is exceeded, the link is reported as down. The missed_max option is a limit value of the maximum allowed number of missed replies (ARP replies for example). It should be chosen in conjunction with the interval option in order to determine the total time before a link is reported as down.
				

					To configure the host name that is resolved to the IPv6 address target address for the NS/NA packets, add or edit a section as follows:

"link_watch": {
 "name": "nsna_ping",
 "target_host": "MyStorage"
}

					 The “target_host” option contains the host name to be converted to an IPv6 address which will be used as the target address for the NS/NA packets. An IPv6 address can be used in place of a host name.
				

					Please see the teamd.conf(5) man page for more information.
				

 ⁠5.12.8. Configure Port Selection Override [Draft]

				The physical port which transmits a frame is normally selected by the kernel part of the team driver, and is not relevant to the user or system administrator. The output port is selected using the policies of the selected team mode (teamd runner). On occasion however, it is helpful to direct certain classes of outgoing traffic to certain physical interfaces to implement slightly more complex policies. By default the team driver is multiqueue aware and 16 queues are created when the driver initializes (see /usr/share/doc/kernel-doc/Documentation/networking/multiqueue.txt for details). If more or less queues are desired, the Netlink attribute tx_queues can be used to change this value during the team driver instance creation.
			

				The queue ID for a port can be set by the port configuration option queue_id as follows:

{
 "queue_id": 3
}

				 These queue ID's can be used in conjunction with the tc utility to configure a multiqueue queue discipline and filters to bias certain traffic to be transmitted on certain port devices. For example, if using the above configuration and wanting to force all traffic bound to 192.168.1.100 to use eth1 in the team as its output device, issue commands as root in the following format:
~]# tc qdisc add dev team0 handle 1 root multiq
~]# tc filter add dev team0 protocol ip parent 1: prio 1 u32 match ip dst \
 192.168.1.100 action skbedit queue_mapping 3

				 This mechanism of overriding runner selection logic in order to bind traffic to a specific port can be used with all runners.
			

 ⁠5.12.9. Configure BPF-based Tx Port Selectors [Draft]

				The loadbalance and LACP runners uses hashes of packets to sort network traffic flow. The hash computation mechanism is based on the Berkeley Packet Filter (BPF) code. The BPF code is used to generate a hash rather than make a policy decision for outgoing packets. The hash length is 8 bits giving 256 variants. This means many different socket buffers (SKB) can have the same hash and therefore pass traffic over the same link. The use of a short hash is a quick way to sort traffic into different streams for the purposes of load balancing across multiple links. In static mode, the hash is only used to decide out of which port the traffic should be sent. In active mode, the runner will continually reassign hashes to different ports in an attempt to reach a perfect balance.
			

				The following fragment types or strings can be used for packet Tx hash computation:
					
							eth — Uses source and destination MAC addresses.
						

	
							vlan — Uses VLAN ID.
						

	
							ipv4 — Uses source and destination IPv4 addresses.
						

	
							ipv6 — Uses source and destination IPv6 addresses.
						

	
							ip — Uses source and destination IPv4 and IPv6 addresses.
						

	
							l3 — Uses source and destination IPv4 and IPv6 addresses.
						

	
							tcp — Uses source and destination TCP ports.
						

	
							udp — Uses source and destination UDP ports.
						

	
							sctp — Uses source and destination SCTP ports.
						

	
							l4 — Uses source and destination TCP and UDP and SCTP ports.
						

			

				These strings can be used by adding a line in the following format to the load balance runner: "tx_hash": ["eth", "ipv4", "ipv6"]
 See Section 5.12.5, “Configure the loadbalance Runner” [Draft] for an example.
			

 ⁠5.13. Configure Network Teaming Using nmcli [Draft]

			To create a new team interface, with name team-ServerA, issue a command as follows:
~]$ nmcli connection add type team ifname ServerA
Connection 'team-ServerA' (981eb129-1707-4a2e-a6ea-413330d96c10) successfully added.

			 As no JSON configuration file was specified the default configuration is used. Notice that the name was derived from the interface name by prepending the type. Alternatively, specify a name with con-name as follows:
~]$ nmcli connection add type team con-name Team0 ifname ServerB
Connection 'Team0' (fcafb3f0-4c95-48df-9e28-7ac7213f38ba) successfully added.

		

			To view the team interfaces just configured, issue a command as follows:
~]$ nmcli connection show
NAME UUID TYPE TIMESTAMP-REAL
Team0 fcafb3f0-4c95-48df-9e28-7ac7213f38ba team never
team-ServerA 981eb129-1707-4a2e-a6ea-413330d96c10 team never

		

			To load a team configuration file for a team that already exists, issue a command as follows:
~]$ nmcli connection modify team-ServerA team.config JSON-config

			 You can specify the team configuration either as JSON string or provide a file name containing the configuration. The file name can include the path. In both cases, what is stored in the team.config property is the JSON string. In the case of a JSON string, use single quotes around the string and paste the entire string to the command line.
		

			To review the team.config property, enter a command as follows:
~]$ nmcli conn show team-ServerA | grep team.config

		

			To add an interface to the team, with name team-slave-ens3, issue a command as follows:
~]$ nmcli connection add type team-slave ifname ens3 master Team0
Connection 'team-slave-ens3' (a33d5d32-87d7-4dc4-8a27-5a44aabfa440) successfully added.

			 Notice that the name was derived from the interface name by prepending the type. Alternatively, specify a name with con-name as follows:
~]$ nmcli con add type team-slave con-name Team0-port1 ifname ens3 master Team0
Connection 'Team0-port1' (adbf21f2-51b6-492f-8fc8-48b831383ac9) successfully added.
~]$ nmcli con add type team-slave con-name Team0-port2 ifname ens7 master Team0
Connection 'Team0-port2' (e5317075-c0c1-472f-b25d-0433b0297ea3) successfully added.

			 At time of writing, nmcli only supports Ethernet ports.
		

			In order to bring up a team, the ports must be brought up first as follows:
~]$ nmcli connection up Team0-port1
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/2)

			
~]$ nmcli connection up Team0-port2
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/3)

		

			You can verify the team interface was brought up by the activation of the ports, as follows:
~]$ ip link
3: Team0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT
 link/ether 52:54:00:76:6f:f0 brd ff:ff:ff:ff:ff:f

			 Alternatively, issue a command to bring up the team as follows:
~]$ nmcli connection up Team0
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/4)

		

			See Section 2.4, “Using the NetworkManager Command Line Tool, nmcli” [Draft] for an introduction to nmcli
		

 ⁠5.14. Additional Resources [Draft]

			The following sources of information provide additional resources regarding network teaming.
		

 ⁠5.14.1. Installed Documentation [Draft]

	
						teamd(8) man page — Describes the teamd service.
					

	
						teamdctl(8) man page — Describes the teamd control tool.
					

	
						teamd.conf(5) man page — Describes the teamd configuration file.
					

	
						teamnl(8) man page — Describes the teamd Netlink library.
					

	
						bond2team(1) man page — Describes a tool to convert bonding options to team.
					

 ⁠5.14.2. Installable Documentation [Draft]

	
						/usr/share/doc/kernel-doc-<kernel_version>/Documentation/ — This directory, which is provided by the kernel-doc package, contains information on bonding which is also relevant to teaming. Before accessing the kernel documentation, you must run the following command as root:
					
~]# yum install kernel-doc

						/usr/share/doc/kernel-doc/Documentation/networking/multiqueue.txt — Describes kernel support for multiqueue devices.
					

 ⁠5.14.3. Online Documentation [Draft]

					http://www.libteam.org
	
								The upstream project.
							

	http://www.w3schools.com/json/json_syntax.asp
	
								An explanation of JSON syntax.
							

			

 ⁠Chapter 6. Configure Network Bridging [Draft]

		A network bridge is a link-layer device which forwards traffic between networks based on MAC addresses. It makes forwarding decisions based on a table of MAC addresses which it builds by listening to network traffic and thereby learning what hosts are connected to each network. A software bridge can be used within a Linux host in order to emulate a hardware bridge, for example in virtualization applications for sharing a NIC with one or more virtual NICs.
	

		Note that a bridge cannot be established over Wi-Fi networks operating in Ad-Hoc or Infrastructure modes. This is due to the IEEE 802.11 standard that specifies the use of 3-address frames in Wi-Fi for the efficient use of airtime. A system configured to be an access point (AP) running the hostapd can support the necessary 4-address frames.
	

 ⁠6.1. Using NetworkManager [Draft]

			When starting a bridge interface, NetworkManager waits for at least one port to enter the “forwarding” state before beginning any network-dependent IP configuration such as DHCP or IPv6 autoconfiguration. Static IP addressing is allowed to proceed before any slaves or ports are connected or begin forwarding packets.
		

 ⁠6.1.1. Establishing a Bridge Connection [Draft]

 ⁠Procedure 6.1. Adding a New Bridge Connection [Draft]
	
						You can configure a new Bridge connection by opening the Network window and selecting the plus symbol below the menu.
					

	
						To use the graphical Network settings tool, press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Select the plus symbol below the menu. The Add Network Connection window appears.
					

	
						Select the Bridge menu entry. The Editing Bridge connection 1 window appears.
					

 ⁠Procedure 6.2. Editing an Existing Bridge Connection [Draft]

					You can configure an existing bridge connection by opening the Network window and selecting the name of the connection from the list. Then click the Edit button.
				
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Select the Bridge connection you wish to edit from the left hand menu.
					

	
						Click the Options button.
					

 ⁠Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings

				Five settings in the Editing dialog are common to all connection types, see the General tab:
			
	
						Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the menu of the Network window.
					

	
						Automatically connect to this network when it is available — Select this box if you want NetworkManager to auto-connect to this connection when it is available. See Section 2.2.3, “Connecting to a Network Automatically” [Draft] for more information.
					

	
						All users may connect to this network — Select this box to create a connection available to all users on the system. Changing this setting may require root privileges. See Section 2.2.4, “System-wide and Private Connection Profiles” [Draft] for details. To prevent unexpected behavior during installation, ensure that this check box remains selected for any network interface that you configure.
					

	
						Automatically connect to VPN when using this connection — Select this box if you want NetworkManager to auto-connect to a VPN connection when it is available. Select the VPN from the dropdown menu.
					

	
						Firewall Zone — Select the Firewall Zone from the dropdown menu.
					

 ⁠Configuring the Bridge Tab
	 Interface name
	
							The name of the interface to the bridge.
						

	 Bridged connections
	
							One or more slave interfaces.
						

	 Aging time
	
							The time, in seconds, a MAC address is kept in the MAC address forwarding database.
						

	 Enable STP (Spanning Tree Protocol)
	
							If required, select the check box to enable STP.
						

	 Priority
	
							The bridge priority; the bridge with the lowest priority will be elected as the root bridge.
						

	 Forward delay
	
							The time, in seconds, spent in both the Listening and Learning states before entering the Forwarding state.
						

	 Hello time
	
							The time interval, in seconds, between sending configuration information in bridge protocol data units (BPDU).
						

	 Max age
	
							The maximum time, in seconds, to store the configuration information from BPDUs. This value should be twice the Hello Time plus 1 but less than twice the Forwarding delay minus 1.
						

 ⁠
 ⁠[image: Editing Bridge Connection 1]

Figure 6.1. Editing Bridge Connection 1 [Draft]

 ⁠Procedure 6.3. Adding a Slave Interface to a Bridge [Draft]
	
						To add a port to a bridge, select the Bridge tab in the Editing Bridge connection 1 window. If necessary, open this window by following the procedure in Procedure 6.2, “Editing an Existing Bridge Connection” [Draft].
					

	
						Click Add. The Choose a Connection Type menu appears.
					

	
						Select the type of connection to be created from the list. Click Create. A window appropriate to the connection type selected appears.
					

	
						Select the Bridge Port tab. Configure Priority and Path cost as required. Note the STP priority for a bridge port is limited by the Linux kernel. Although the standard allows a range of 0 to 255, Linux only allows 0 to 63. The default is 32 in this case.
					

	
						If required, select the Hairpin mode check box to enable forwarding of frames for external processing. Also known as virtual Ethernet port aggregator (VEPA) mode.
					

 ⁠Saving Your New (or Modified) Connection and Making Further Configurations

				Once you have finished editing your new bridge connection, click the Save button to save your customized configuration. To make NetworkManager apply the changes, power cycle the interface. See Section 2.2.1, “Connecting to a Network Using a GUI” [Draft] for information on using your new or altered connection.
			

				You can further configure an existing connection by selecting it in the Network window and clicking Configure to return to the Editing dialog.
			

				Then, to configure:
			
	
						IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 2.2.10.4, “Configuring IPv4 Settings” [Draft], or;
					

	
						IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 2.2.10.5, “Configuring IPv6 Settings” [Draft].
					

 ⁠6.2. Using the Command Line Interface (CLI) [Draft]

 ⁠6.2.1. Check if Bridging Kernel Module is Installed [Draft]

				In Fedora, the bridging module is loaded by default. If necessary, you can make sure that the module is loaded by issuing the following command as root:
~]# modprobe --first-time bridge
modprobe: ERROR: could not insert 'bridge': Module already in kernel

				 To display information about the module, issue the following command:
~]$ modinfo bridge

				 See the modprobe(8) man page for more command options.
			

 ⁠6.2.2. Create a Network Bridge [Draft]

				To create a network bridge, create a file in the /etc/sysconfig/network-scripts/ directory called ifcfg-brN, replacing N with the number for the interface, such as 0.
			

				The contents of the file is similar to whatever type of interface is getting bridged to, such as an Ethernet interface. The differences in this example are as follows:
					
							The DEVICE directive is given an interface name as its argument in the format brN, where N is replaced with the number of the interface.
						

	
							The TYPE directive is given an argument Bridge or Ethernet. This directive determines the device type and the argument is case sensitive.
						

	
							The bridge interface configuration file is given an IP address whereas the physical interface configuration file must only have a MAC address (see below).
						

	
							An extra directive, DELAY=0, is added to prevent the bridge from waiting while it monitors traffic, learns where hosts are located, and builds a table of MAC addresses on which to base its filtering decisions. The default delay of 30 seconds is not needed if no routing loops are possible.
						

	
							The NM_CONTROLLED=no should be added to the Ethernet interface to prevent NetworkManager from altering the file. It can also be added to the bridge configuration file.
						

			

				The following is a sample bridge interface configuration file using a static IP address:
			

 ⁠Example 6.1. Sample ifcfg-br0 Interface Configuration File [Draft]
DEVICE=br0
TYPE=Bridge
IPADDR=192.168.1.1
NETMASK=255.255.255.0
ONBOOT=yes
BOOTPROTO=none
NM_CONTROLLED=no
DELAY=0

				To complete the bridge another interface is created, or an existing interface is modified, and pointed to the bridge interface. The following is a sample Ethernet interface configuration file pointing to a bridge interface. Configure your physical interface in /etc/sysconfig/network-scripts/ifcfg-ethX, where X is a unique number corresponding to a specific interface, as follows:
			

 ⁠Example 6.2. Sample ifcfg-ethX Interface Configuration File [Draft]
DEVICE=ethX
TYPE=Ethernet
HWADDR=AA:BB:CC:DD:EE:FF
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br0

Note [Draft]

					For the DEVICE directive, almost any interface name could be used as it does not determine the device type. TYPE=Ethernet is not strictly required. If the TYPE directive is not set, the device is treated as an Ethernet device (unless it's name explicitly matches a different interface configuration file.)
				

				Specifying the hardware or MAC address using the HWADDR directive will influence the device naming procedure as explained in Chapter 8, Consistent Network Device Naming [Draft].
			

				See the Fedora 20 System Administrator's Reference Guide for a review of the directives and options used in network interface configuration files.
			
Warning [Draft]

					If you are configuring bridging on a remote host, and you are connected to that host over the physical NIC you are configuring, please consider the implications of losing connectivity before proceeding. You will lose connectivity when restarting the service and may not be able to regain connectivity if any errors have been made. Console, or out-of-band access is advised.
				

				Restart the networking service in order for the changes to take effect. As root issue the following command:
			
~]# systemctl network restart

				An example of a network bridge formed from two or more bonded Ethernet interfaces will now be given as this is another common application in a virtualization environment. If you are not very familiar with the configuration files for bonded interfaces then please refer to Section 4.3.2, “Create a Channel Bonding Interface” [Draft]
			

				Create or edit two or more Ethernet interface configuration files, which are to be bonded, as follows:
DEVICE=ethX
TYPE=Ethernet
SLAVE=yes
MASTER=bond0
BOOTPROTO=none
HWADDR=AA:BB:CC:DD:EE:FF
NM_CONTROLLED=no

			
Note [Draft]

					Using ethX as the interface name is common practice but almost any name could be used.
				

				Create or edit one interface configuration file, /etc/sysconfig/network-scripts/ifcfg-bond0, as follows:
DEVICE=bond0
ONBOOT=yes
BONDING_OPTS='mode=1 miimon=100'
BRIDGE=brbond0
NM_CONTROLLED=no

				 For further instructions and advice on configuring the bonding module and to view the list of bonding parameters, see the Fedora 20 System Administrator's Reference Guide.
			

				Create or edit one interface configuration file, /etc/sysconfig/network-scripts/ifcfg-brbond0, as follows:
DEVICE=brbond0
ONBOOT=yes
TYPE=Bridge
IPADDR=192.168.1.1
NETMASK=255.255.255.0
NM_CONTROLLED=no

			

				We now have two or more interface configuration files with the MASTER=bond0 directive. These point to the configuration file named /etc/sysconfig/network-scripts/ifcfg-bond0, which contains the DEVICE=bond0 directive. This ifcfg-bond0 in turn points to the /etc/sysconfig/network-scripts/ifcfg-brbond0 configuration file, which contains the IP address, and acts as an interface to the virtual networks inside the host.
			

				Restart the networking service, in order for the changes to take effect. As root issue the following command:
			
~]# systemctl network restart

 ⁠6.3. Using the NetworkManager Command Line Tool, nmcli [Draft]

			To create a bridge, with name bridge-br0, issue a command as follows:
~]$ nmcli con add type bridge ifname br0
Connection 'bridge-br0' (79cf6a3e-0310-4a78-b759-bda1cc3eef8d) successfully added.

			 If no interface name is specified, the name will default to bridge, bridge-1, bridge-2, and so on.
		

			To view the connections, issue the following command:
~]$ nmcli con show conf
NAME UUID TYPE TIMESTAMP-REAL
eth0 4d5c449a-a6c5-451c-8206-3c9a4ec88bca 802-3-ethernet Mon 21 Oct 2013 16:01:53 BST
bridge-br0 79cf6a3e-0310-4a78-b759-bda1cc3eef8d bridge never

		

			Spanning tree protocol (STP) according to the IEEE 802.1D standard is enabled by default. To disable STP for this bridge, issue a command as follows:
~]$ nmcli con bridge-br0 stp no

			 To re-enable 802.1D STP for this bridge, issue a command as follows:
~]$ nmcli con bridge-br0 stp yes

		

			The default bridge priority for 802.1D STP is 32768. The lower number is preferred in root bridge selection. For example, a bridge with priority of 28672 would be selected as the root bridge in preference to a bridge with priority value of 32768 (the default). To create a bridge with a non-default value, issue a command as follows:
~]$ nmcli con add type bridge ifname br5 stp yes priority 28672
Connection 'bridge-br5' (86b83ad3-b466-4795-aeb6-4a66eb1856c7) successfully added.

			 The allowed values are in the range 0 to 65535, but can only be set in multiples of 4096.
		

			To change the bridge priority of an existing bridge to a non-default value, issue a command in the following format:
~]$ nmcli connection modify bridge-br5 bridge.priority 36864

			 The allowed values are in the range 0 to 65535, but can only be set in multiples of 4096.
		

			Further options for 802.1D STP are listed in the bridge section of the nmcli(1) man page.
		

			To add, or enslave an interface, for example eth1, to the bridge bridge-br0, issue a command as follows:
~]$ nmcli con add type bridge-slave ifname eth1 master bridge-br0
Connection 'bridge-slave-eth1' (70ffae80-7428-4d9c-8cbd-2e35de72476e) successfully added.

			 At time of writing, nmcli only supports Ethernet slaves.
		

			To change a value using interactive mode, issue the following command:
~]$ nmcli connection edit bridge-br0

			 You will be placed at the nmcli prompt.
nmcli> set bridge.priority 4096
nmcli> save
Connection 'bridge-br0' (79cf6a3e-0310-4a78-b759-bda1cc3eef8d) successfully saved.
nmcli> quit

		

			See Section 2.4, “Using the NetworkManager Command Line Tool, nmcli” [Draft] for an introduction to nmcli
		

 ⁠6.4. Additional Resources [Draft]

			The following sources of information provide additional resources regarding network bridging.
		

 ⁠6.4.1. Installed Documentation [Draft]

	
						nmcli(1) man page — Describes NetworkManager's command‐line tool.
					

	
						nmcli-examples(5) man page — Gives examples of nmcli commands.
					

	
						nm-settings(5) man page — Description of settings and parameters of NetworkManager connections.
					

 ⁠Chapter 7. Configure 802.1Q VLAN tagging [Draft]

 ⁠7.1. Configure 802.1Q VLAN Tagging Using a GUI [Draft]

 ⁠7.1.1. Establishing a VLAN Connection [Draft]

				You can use the GNOME control-center utility to direct NetworkManager to create a VLAN using an existing interface as the parent interface. At time of writing, you can only make VLANs on Ethernet devices. Note that VLAN devices are only created automatically if the parent interface is set to connect automatically.
			

 ⁠Procedure 7.1. Adding a New VLAN Connection [Draft]

					You can configure a VLAN connection by opening the Network window, clicking the plus symbol, and selecting VLAN from the list.
				
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Click the plus symbol to open the selection list. Select VLAN. The Editing VLAN Connection 1 window appears.
					

	
						On the VLAN tab, select the parent interface from the drop-down list you want to use for the VLAN connection.
					

	
						Enter the VLAN ID
					

	
						Enter a VLAN interface name. This is the name of the VLAN interface that will be created. For example, eth0.1 or vlan2. (Normally this is either the parent interface name plus “.” and the VLAN ID, or “vlan” plus the VLAN ID.)
					

	
						Review and confirm the settings and then click the Save button.
					

	
						To edit the VLAN-specific settings see Section 7.1.1.1, “Configuring the VLAN Tab” [Draft].
					

 ⁠Procedure 7.2. Editing an Existing VLAN Connection [Draft]

					Follow these steps to edit an existing VLAN connection.
				
	
						Press the Super key to enter the Activities Overview, type control network and then press Enter. The Network settings tool appears.
					

	
						Select the connection you wish to edit and click the Options button.
					

	
						Select the General tab.
					

	
						Configure the connection name, auto-connect behavior, and availability settings.
					

						These settings in the Editing dialog are common to all connection types:
					
	
								Connection name — Enter a descriptive name for your network connection. This name will be used to list this connection in the VLAN section of the Network window.
							

	
								Automatically connect to this network when it is available — Select this box if you want NetworkManager to auto-connect to this connection when it is available. Refer to Section 2.2.3, “Connecting to a Network Automatically” [Draft] for more information.
							

	
								Available to all users — Select this box to create a connection available to all users on the system. Changing this setting may require root privileges. Refer to Section 2.2.4, “System-wide and Private Connection Profiles” [Draft] for details.
							

	
						To edit the VLAN-specific settings see Section 7.1.1.1, “Configuring the VLAN Tab” [Draft].
					

 ⁠Saving Your New (or Modified) Connection and Making Further Configurations

				Once you have finished editing your VLAN connection, click the Save button to save your customized configuration. To make NetworkManager apply the changes, power cycle the interface. See Section 2.2.1, “Connecting to a Network Using a GUI” [Draft] for information on using your new or altered connection.
			

				You can further configure an existing connection by selecting it in the Network window and clicking Options to return to the Editing dialog.
			

				Then, to configure:
			
	
						IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 2.2.10.4, “Configuring IPv4 Settings” [Draft].
					

 ⁠7.1.1.1. Configuring the VLAN Tab [Draft]

					If you have already added a new VLAN connection (refer to Procedure 7.1, “Adding a New VLAN Connection” [Draft] for instructions), you can edit the VLAN tab to set the parent interface and the VLAN ID.
				
	 Parent Interface
	
								A previously configured interface can be selected in the drop-down list.
							

	 VLAN ID
	
								The identification number to be used to tag the VLAN network traffic.
							

	 VLAN interface name
	
								The name of the VLAN interface that will be created. For example, eth0.1 or vlan2.
							

	 Cloned MAC address
	
								Optionally sets an alternate MAC address to use for identifying the VLAN interface. This can be used to change the source MAC address for packets sent on this VLAN.
							

	 MTU
	
								Optionally sets a Maximum Transmission Unit (MTU) size to be used for packets to be sent over the VLAN connection.
							

 ⁠7.2. Configure 802.1Q VLAN Tagging Using the Command Line [Draft]

			In Fedora, the 8021q module is loaded by default. If necessary, you can make sure that the module is loaded by issuing the following command as root:
~]# modprobe --first-time 8021q
modprobe: ERROR: could not insert '8021q': Module already in kernel

			 To display information about the module, issue the following command:
~]$ modinfo 8021q

			 See the modprobe(8) man page for more command options.
		

 ⁠7.2.1. Setting Up 802.1Q VLAN Tagging Using ifcfg Files [Draft]

	
						Configure your physical interface in /etc/sysconfig/network-scripts/ifcfg-ethX, where X is a unique number corresponding to a specific interface, as follows:
					
DEVICE=ethX
TYPE=Ethernet
BOOTPROTO=none
ONBOOT=yes

	
						Configure the VLAN interface configuration in the /etc/sysconfig/network-scripts/ directory. The configuration file name should be the physical interface plus a . character plus the VLAN ID number. For example, if the VLAN ID is 192, and the physical interface is eth0, then the configuration file name should be ifcfg-eth0.192:
					
DEVICE=ethX.192
BOOTPROTO=none
ONBOOT=yes
IPADDR=192.168.1.1
NETMASK=255.255.255.0
NETWORK=192.168.1.0
VLAN=yes

						If there is a need to configure a second VLAN, with for example, VLAN ID 193, on the same interface, eth0, add a new file with the name eth0.193 with the VLAN configuration details.
					

	
						Restart the networking service in order for the changes to take effect. As root issue the following command:
					
~]# systemctl restart network

 ⁠7.3. Configure 802.1Q VLAN Tagging Using ip Commands [Draft]

			To create an 802.1Q VLAN interface on Ethernet interface eth0, with name VLAN8 and ID 8, issue a command as root as follows:
~]# ip link add link eth0 name eth0.8 type vlan id 8

			 To view the VLAN, issue the following command:
~]$ ip -d link show eth0.8
4: eth0.8@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT
 link/ether 52:54:00:ce:5f:6c brd ff:ff:ff:ff:ff:ff promiscuity 0
 vlan protocol 802.1Q id 8 <REORDER_HDR>

		

			Note that the ip utility interprets the VLAN ID as a hexadecimal value if it is preceded by 0x and as an octal value if it has a leading 0. This means that in order to assign a VLAN ID with a decimal value of 22, you must not add any leading zeros.
		

			To remove the VLAN, issue a command as root as follows:
~]# ip link delete eth0.8

		
Note [Draft]

				VLAN interfaces created using ip commands on the command line will be lost if the system is shutdown or restarted. To configure VLAN interfaces to be persistent after a system restart, use ifcfg files. See Section 7.2.1, “Setting Up 802.1Q VLAN Tagging Using ifcfg Files” [Draft]
			

 ⁠7.4. Configure 802.1Q VLAN Tagging Using the Command Line Tool, nmcli [Draft]

			To create an 802.1Q VLAN interface on Ethernet interface eth0, with VLAN interface VLAN10 and ID 10, issue a command as follows:
~]$ nmcli con add type vlan ifname VLAN10 dev eth0 id 10
Connection 'vlan-VLAN10' (37750b4a-8ef5-40e6-be9b-4fb21a4b6d17) successfully added.

			 Note that as no con-name was given for the VLAN interface, the name was derived from the interface name by prepending the type. Alternatively, specify a name with con-name as follows:
~]$ nmcli con add type vlan con-name VLAN12 dev eth0 id 12
Connection 'VLAN12' (b796c16a-9f5f-441c-835c-f594d40e6533) successfully added.

		

			Further options for the VLAN command are listed in the VLAN section of the nmcli(1) man page. In the man pages the device on which the VLAN is created is referred to as the parent device. In the example above the device was specified by its interface name, eth0, it can also be specified by the connection UUID or MAC address.
		

			To create an 802.1Q VLAN connection profile with ingress priority mapping on Ethernet interface eth1, with name VLAN1 and ID 13, issue a command as follows:
~]$ nmcli con add type vlan con-name VLAN1 dev eth2 id 13 ingress "2:3,3:5"

		

			To view all the parameters associated with the VLAN created above, issue a command as follows:
~]$ nmcli connection show vlan-VLAN10

		

			To change the MTU, issue a command as follows:
~]$ nmcli connection modify vlan-VLAN10 802.mtu 1496

			 The MTU setting determines the maximum size of the network layer packet. The maximum size of the payload the link-layer frame can carry in turn limits the network layer MTU. For standard Ethernet frames this means an MTU of 1500 bytes. It should not be necessary to change the MTU when setting up a VLAN as the link-layer header is increased in size by 4 bytes to accommodate the 802.1Q tag.
		

			At time of writing, connection.interface-name and vlan.interface-name have to be the same (if they are set). They must therefore be changed simultaneously using nmcli's interactive mode. To change a VLAN connections name, issue commands as follows:
~]$ nmcli con edit vlan-VLAN10
nmcli> set vlan.interface-name superVLAN
nmcli> set connection.interface-name superVLAN
nmcli> save
nmcli> quit

		

			The nmcli utility can be used to set and clear ioctl flags which change the way the 802.1Q code functions. The following VLAN flags are supported by NetworkManager:
				
						0x01 - reordering of output packet headers
					

	
						0x02 - use GVRP protocol
					

	
						0x04 - loose binding of the interface and its master
					

			 The state of the VLAN is synchronized to the state of the parent or master interface (the interface or device on which the VLAN is created). If the parent interface is set to the “down” administrative state then all associated VLANs are set down and all routes are flushed from the routing table. Flag 0x04 enables a loose binding mode, in which only the operational state is passed from the parent to the associated VLANs, but the VLAN device state is not changed.
		

			To set a VLAN flag, issue a command as follows:
~]$ nmcli connection modify vlan-VLAN10 vlan.flags 1

		

			See Section 2.4, “Using the NetworkManager Command Line Tool, nmcli” [Draft] for an introduction to nmcli
		

 ⁠7.5. Additional Resources [Draft]

			The following sources of information provide additional resources regarding Network Teaming.
		

 ⁠7.5.1. Installed Documentation [Draft]

	
						ip-link(8) man page — Describes the ip utility's network device configuration commands.
					

	
						nmcli(1) man page — Describes NetworkManager's command‐line tool.
					

	
						nmcli-examples(5) man page — Gives examples of nmcli commands.
					

	
						nm-settings(5) man page — Description of settings and parameters of NetworkManager connections.
					

 ⁠Chapter 8. Consistent Network Device Naming [Draft]

		Fedora 20 provides methods for consistent and predictable network device naming for network interfaces. These features change the name of network interfaces on a system in order to make locating and differentiating the interfaces easier.
	

		Traditionally, network interfaces in Linux are enumerated as eth[0123…], but these names do not necessarily correspond to actual labels on the chassis. Modern server platforms with multiple network adapters can encounter non-deterministic and counter-intuitive naming of these interfaces. This affects both network adapters embedded on the motherboard (Lan-on-Motherboard, or LOM) and add-in (single and multiport) adapters.
	

		In Fedora 20, systemd and udev support a number of different naming schemes. The default is to assign fixed names based on firmware, topology, and location information. This has the advantage that the names are fully automatic, fully predictable, that they stay fixed even if hardware is added or removed (no re-enumeration takes place), and that broken hardware can be replaced seamlessly. The disadvantage is that they are sometimes harder to read than the eth0 or wlan0 names traditionally used. For example: enp5s0.
	

 ⁠8.1. Naming Schemes Hierarchy [Draft]

			By default, systemd will name interfaces using the following policy to apply the supported naming schemes:
				
						Scheme 1: Names incorporating Firmware or BIOS provided index numbers for on-board devices (example: eno1), are applied if that information from the firmware or BIOS is applicable and available, else falling back to scheme 2.
					

	
						Scheme 2: Names incorporating Firmware or BIOS provided PCI Express hotplug slot index numbers (example: ens1) are applied if that information from the firmware or BIOS is applicable and available, else falling back to scheme 3.
					

	
						Scheme 3: Names incorporating physical location of the connector of the hardware (example: enp2s0), are applied if applicable, else falling directly back to scheme 5 in all other cases.
					

	
						Scheme 4: Names incorporating interface's MAC address (example: enx78e7d1ea46da), is not used by default, but is available if the user chooses.
					

	
						Scheme 5: The traditional unpredictable kernel naming scheme, is used if all other methods fail (example: eth0).
					

		

			This policy, the procedure outlined above, is the default. If the system has biosdevname enabled, it will be used. Note that enabling biosdevname requires passing biosdevname=1 as a command line parameter except in the case of a Dell system, where biosdevname will be used by default as long as it is installed. If the user has added udev rules which change the name of the kernel devices, those rules will take precedence.
		

 ⁠8.2. Understanding the Device Renaming Procedure [Draft]

			The device name procedure in detail is as follows:
		
	
					A rule in /usr/lib/udev/rules.d/60-net.rules instructs the udev helper utility, /lib/udev/rename_device, to look into all /etc/sysconfig/network-scripts/ifcfg-suffix files. If it finds an ifcfg file with a HWADDR entry matching the MAC address of an interface it renames the interface to the name given in the ifcfg file by the DEVICE directive.
				

	
					A rule in /usr/lib/udev/rules.d/71-biosdevname.rules instructs biosdevname to rename the interface according to its naming policy, provided that it was not renamed in a previous step, biosdevname is installed, and biosdevname=0 was not given as a kernel command on the boot command line.
				

	
					A rule in /lib/udev/rules.d/75-net-description.rules instructs udev to fill in the internal udev device property values ID_NET_NAME_ONBOARD, ID_NET_NAME_SLOT, ID_NET_NAME_PATH, ID_NET_NAME_MAC by examining the network interface device. Note, that some device properties might be undefined.
				

	
					A rule in /usr/lib/udev/rules.d/80-net-name-slot.rules instructs udev to rename the interface, provided that it was not renamed in step 1 or 2, and the kernel parameter net.ifnames=0 was not given, according to the following priority: ID_NET_NAME_ONBOARD, ID_NET_NAME_SLOT, ID_NET_NAME_PATH. It falls through to the next in the list, if one is unset. If none of these are set, then the interface will not be renamed.
				

			Steps 3 and 4 are implementing the naming schemes 1, 2, 3, and optionally 4, described in Section 8.1, “Naming Schemes Hierarchy” [Draft]. Step 2 is explained in more detail in Section 8.6, “Consistent Network Device Naming Using biosdevname” [Draft].
		

 ⁠8.3. Understanding the Predictable Network Interface Device Names [Draft]

			The names have two character prefixes based on the type of interface:
				
						en for Ethernet,
					

	
						wl for wireless LAN (WLAN),
					

	
						ww for wireless wide area network (WWAN).
					

		

			The names have the following types:
			
 ⁠Table 8.1. Device Name Types [Draft]
	Format	Description
	o<index>	on-board device index number
	s<slot>[f<function>][d<dev_id>]	hotplug slot index number
	x<MAC>	MAC address
	p<bus>s<slot>[f<function>][d<dev_id>]	PCI geographical location
	p<bus>s<slot>[f<function>][u<port>][..][c<config>][i<interface>]	USB port number chain

			 	
						All multi-function PCI devices will carry the [f<function>] number in the device name, including the function 0 device.
					

	
						For USB devices the full chain of port numbers of hubs is composed. If the name gets longer than the maximum number of 15 characters, the name is not exported.
					

	
						The USB configuration descriptors == 1 and USB interface descriptors == 0 values are suppressed (configuration == 1 and interface == 0 are the default values if only one USB configuration or interface exists).
					

		

 ⁠8.4. Naming Scheme for Network Devices Available for Linux on System z [Draft]

			Use the bus-ID to create predictable device names for network interfaces in Linux on System z instances. The bus-ID identifies a device in the s390 channel subsystem. A bus ID identifies the device within the scope of a Linux instance. For a CCW device, the bus ID is the device's device number with a leading 0.n, where n is the subchannel set ID. For example, 0.1.0ab1.
		

			Network interfaces of device type Ethernet are named as follows: enccw0.0.1234

		

			CTC network devices of device type SLIP are named as follows: slccw0.0.1234

		

			Use the znetconf -c command or the lscss -a command to display available network devices and their bus-IDs.
		

 ⁠Table 8.2. Device Name Types for Linux on System z [Draft]
	Format	Description
	enccwbus-ID	device type Ethernet
	slccwbus-ID	CTC network devices of device type SLIP

 ⁠8.5. Naming Scheme for VLAN Interfaces [Draft]

			Traditionally, VLAN interface names in the format: interface-name.VLAN-ID are used. The VLAN-ID ranges from 0 to 4096, which is a maximum of four characters and the total interface name has a limit of 15 characters. The maximum interface name length is defined by the kernel headers and is a global limit, affecting all applications.
		

			In Fedora, four naming conventions for VLAN interface names are supported:
		
	VLAN plus VLAN ID
	
						The word vlan plus the VLAN ID. For example: vlan0005
					

	VLAN plus VLAN ID without padding
	
						The word vlan plus the VLAN ID with out padding by means of an additional two zeros. For example: vlan5
					

	Device name plus VLAN ID
	
						The name of the parent interface plus the VLAN ID. For example: eth0.0005
					

	Device name plus VLAN ID without padding
	
						The name of the parent interface plus the VLAN ID with out padding by means of an additional two zeros. For example: eth0.05
					

 ⁠8.6. Consistent Network Device Naming Using biosdevname [Draft]

			This feature, implemented via the biosdevname udev helper utility, will change the name of all embedded network interfaces, PCI card network interfaces, and virtual function network interfaces from the existing eth[0123…] to the new naming convention as shown in Table 8.3, “The biosdevname Naming Convention” [Draft]. Note that unless the system is a Dell system, or biosdevname is explicitly enabled as described in Section 8.6.2, “Enabling and Disabling the Feature” [Draft], the systemd naming scheme will take precedence.
		

 ⁠Table 8.3. The biosdevname Naming Convention [Draft]
	 Device 	 Old Name 	 New Name
	 Embedded network interface (LOM) 	 eth[0123…] 	 em[1234…]
 ⁠[a]
	 PCI card network interface 	 eth[0123…] 	 p<slot>p<ethernet port>
 ⁠[b]
	 Virtual function 	 eth[0123…] 	 p<slot>p<ethernet port>_<virtual interface>
 ⁠[c]
	[a]
							New enumeration starts at 1.
						

[b]
							For example: p3p4
						

[c]
							For example: p3p4_1
						

 ⁠8.6.1. System Requirements [Draft]

				The biosdevname program uses information from the system's BIOS, specifically the type 9 (System Slot) and type 41 (Onboard Devices Extended Information) fields contained within the SMBIOS. If the system's BIOS does not have SMBIOS version 2.6 or higher and this data, the new naming convention will not be used. Most older hardware does not support this feature because of a lack of BIOSes with the correct SMBIOS version and field information. For BIOS or SMBIOS version information, contact your hardware vendor.
			

				For this feature to take effect, the biosdevname package must also be installed. To install it, issue the following command as root:
~]# yum install biosdevname

			

 ⁠8.6.2. Enabling and Disabling the Feature [Draft]

				To disable this feature, pass the following option on the boot command line, both during and after installation:
			
biosdevname=0

				To enable this feature, pass the following option on the boot command line, both during and after installation:
			
biosdevname=1

				Unless the system meets the minimum requirements, this option will be ignored and the system will use the systemd naming scheme as described in the beginning of the chapter.
			

				If the biosdevname install option is specified, it must remain as a boot option for the lifetime of the system.
			

 ⁠8.7. Notes for Administrators [Draft]

			Many system customization files can include network interface names, and thus will require updates if moving a system from the old convention to the new convention. If you use the new naming convention, you will also need to update network interface names in areas such as custom iptables rules, scripts altering irqbalance, and other similar configuration files. Also, enabling this change for installation will require modification to existing kickstart files that use device names via the ksdevice parameter; these kickstart files will need to be updated to use the network device's MAC address or the network device's new name.
		
Note [Draft]

				The maximum interface name length is defined by the kernel headers and is a global limit, affecting all applications.
			

 ⁠8.8. Controlling the Selection of Network Device Names [Draft]

			Device naming can be controlled in the following manner:
		
	By identifying the network interface device
	
						Setting the MAC address in an ifcfg file using the HWADDR directive enables it to be identified by udev. The name will be taken from the string given by the DEVICE directive, which by convention is the same as the ifcfg suffix. For example, ifcfg-eth0.
					

	By turning on or off biosdevname
	
						The name provided by biosdevname will be used (if biosdevname can determine one).
					

	By turning on or off the systemd-udev naming scheme
	
						The name provided by systemd-udev will be used (if systemd-udev can determine one).
					

 ⁠8.9. Disabling Consistent Network Device Naming [Draft]

			To disable consistent network device naming, choose from one of the following:
				
						Disable the assignment of fixed names, so that the unpredictable kernel names are used again, by masking udev's rule file for the default policy. This “masking” can be done by making a symbolic link to /dev/null. As root, issue a command as follows:
~]# ln -s /dev/null /etc/udev/rules.d/80-net-name-slot.rules

					

	
						Create your own manual naming scheme, for example by naming your interfaces “internet0”, “dmz0” or “lan0”. To do that create your own udev rules file and set the NAME property for the devices. Make sure to order it before the default policy file, for example by naming it /etc/udev/rules.d/70-my-net-names.rules.
					

	
						Alter the default policy file to pick a different naming scheme, for example to name all interfaces after their MAC address by default. As root copy the default policy file as follows:
~]# cp /usr/lib/udev/rules.d/80-net-name-slot.rules /etc/udev/rules.d/80-net-name-slot.rules

						 Edit the file in the /etc/udev/rules.d/ directory and change the lines as necessary.
					

	
						Add the following line to the /etc/default/grub file: net.ifnames=0
 or pass it to the kernel at boot time using the GRUB2 command line interface. For more information about GRUB2 see Fedora 20 System Administrator's Guide.
					

		

 ⁠8.10. Troubleshooting Network Device Naming [Draft]

			Predictable interface names will be assigned for each interface, if applicable, as per the procedure described in Section 8.2, “Understanding the Device Renaming Procedure” [Draft]. To view the list of possible names udev will use, issue a command in the following form as root:
~]# udevadm info /sys/class/net/ifname | grep ID_NET_NAME

			 where ifname is one of the interfaces listed by the following command:
~]$ ls /sys/class/net/

		

			One of the possible names will be applied by udev according to the rules as described in Section 8.2, “Understanding the Device Renaming Procedure” [Draft], and summarized here:
				
						/usr/lib/udev/rules.d/60-net.rules - from initscripts,
					

	
						/usr/lib/udev/rules.d/71-biosdevname.rules - from biosdevname,
					

	
						/usr/lib/udev/rules.d/80-net-name-slot.rules - from systemd
					

		

			From the above list of rule files it can be seen that if interface naming is done via initscripts or biosdevname it always takes precedence over udev native naming. However if initscripts renaming is not taking place and biosdevname is disabled, then to alter the interface names copy the 80-net-name-slot.rules from /usr/ to /etc/ and edit the file appropriately. In other words, comment out or arrange schemes to be used in a certain order.
		

 ⁠Example 8.1. Some interfaces have names from the kernel namespace (eth[0,1,2...]) while others are successfully renamed by udev [Draft]

				Mixed up schemes most likely means that either for some hardware there is no usable information provided by the kernel to udev, thus it could not figure out any names, or the information provided to udev is not suitable, for example non-unique device IDs. The latter is more common and the solution is to use a custom naming scheme in ifcfg files or alter which udev scheme is in use by editing 80-net-name-slot.rules.
			

 ⁠Example 8.2. In /var/log/messages or the systemd journal, renaming is seen to be done twice for each interface [Draft]

				Systems with the naming scheme encoded in ifcfg files but which do not have a regenerated initrd image are likely to encounter this issue. The interface name is initially assigned (via biosdevname or udev or dracut parameters on the kernel command line) during early-boot while still in initrd. Then after switching to real rootfs, renaming is done a second time and a new interface name is determined by the /usr/lib/udev/rename_device binary spawned by udev because of processing 60-net.rules. You can safely ignore such messages.
			

 ⁠Example 8.3. Using naming scheme in ifcfg files with ethX names does not work [Draft]

				Use of interface names from kernel namespace is discouraged. To get predictable and stable interface names please use some other prefix than "eth".
			

 ⁠8.11. Additional Resources [Draft]

			The following sources of information provide additional resources regarding Network Teaming.
		

 ⁠8.11.1. Installed Documentation [Draft]

	
						udev(7) man page — Describes the Linux dynamic device management daemon, udevd.
					

	
						systemd(1) man page — Describes systemd system and service manager.
					

	
						biosdevname(1) man page — Describes the utility for obtaining the BIOS-given name of a device.
					

 ⁠Part II. Servers [Draft]

				This part discusses how to set up servers normally required for networking.
			

 ⁠Chapter 9. DHCP Servers [Draft]

		Dynamic Host Configuration Protocol (DHCP) is a network protocol that automatically assigns TCP/IP information to client machines. Each DHCP client connects to the centrally located DHCP server, which returns the network configuration (including the IP address, gateway, and DNS servers) of that client.
	

 ⁠9.1. Why Use DHCP? [Draft]

			DHCP is useful for automatic configuration of client network interfaces. When configuring the client system, you can choose DHCP instead of specifying an IP address, netmask, gateway, or DNS servers. The client retrieves this information from the DHCP server. DHCP is also useful if you want to change the IP addresses of a large number of systems. Instead of reconfiguring all the systems, you can just edit one configuration file on the server for the new set of IP addresses. If the DNS servers for an organization changes, the changes happen on the DHCP server, not on the DHCP clients. When you restart the network or reboot the clients, the changes go into effect.
		

			If an organization has a functional DHCP server correctly connected to a network, laptops and other mobile computer users can move these devices from office to office.
		

			Note that administrators of DNS and DHCP servers, as well as any provisioning applications, should agree on the host name format used in an organization. See Section 3.1.1, “Recommended Naming Practices” [Draft] for more information on the format of host names.
		

 ⁠9.2. Configuring a DHCP Server [Draft]

			The dhcp package contains an Internet Systems Consortium (ISC) DHCP server. Install the package as root:
		
~]# yum install dhcp

			Installing the dhcp package creates a file, /etc/dhcp/dhcpd.conf, which is merely an empty configuration file. As root, issue the following command:
		
~]# cat /etc/dhcp/dhcpd.conf
#
DHCP Server Configuration file.
see /usr/share/doc/dhcp/dhcpd.conf.example
see dhcpd.conf(5) man page
#

			The example configuration file can be found at /usr/share/doc/dhcp/dhcpd.conf.example. You should use this file to help you configure /etc/dhcp/dhcpd.conf, which is explained in detail below.
		

			DHCP also uses the file /var/lib/dhcpd/dhcpd.leases to store the client lease database. Refer to Section 9.2.2, “Lease Database” [Draft] for more information.
		

 ⁠9.2.1. Configuration File [Draft]

				The first step in configuring a DHCP server is to create the configuration file that stores the network information for the clients. Use this file to declare options for client systems.
			

				The configuration file can contain extra tabs or blank lines for easier formatting. Keywords are case-insensitive and lines beginning with a hash sign (#) are considered comments.
			

				There are two types of statements in the configuration file:
			
	
						Parameters — State how to perform a task, whether to perform a task, or what network configuration options to send to the client.
					

	
						Declarations — Describe the topology of the network, describe the clients, provide addresses for the clients, or apply a group of parameters to a group of declarations.
					

				The parameters that start with the keyword option are referred to as options. These options control DHCP options; whereas, parameters configure values that are not optional or control how the DHCP server behaves.
			

				Parameters (including options) declared before a section enclosed in curly brackets ({ }) are considered global parameters. Global parameters apply to all the sections below it.
			
Restart the DHCP Daemon for the Changes to Take Effect [Draft]

					If the configuration file is changed, the changes do not take effect until the DHCP daemon is restarted with the command systemctl restart dhcpd.
				

Use the omshell Command [Draft]

					Instead of changing a DHCP configuration file and restarting the service each time, using the omshell command provides an interactive way to connect to, query, and change the configuration of a DHCP server. By using omshell, all changes can be made while the server is running. For more information on omshell, see the omshell man page.
				

				In Example 9.1, “Subnet Declaration” [Draft], the routers, subnet-mask, domain-search, domain-name-servers, and time-offset options are used for any host statements declared below it.
			

				For every subnet which will be served, and for every subnet to which the DHCP server is connected, there must be one subnet declaration, which tells the DHCP daemon how to recognize that an address is on that subnet. A subnet declaration is required for each subnet even if no addresses will be dynamically allocated to that subnet.
			

				In this example, there are global options for every DHCP client in the subnet and a range declared. Clients are assigned an IP address within the range.
			

 ⁠Example 9.1. Subnet Declaration [Draft]
subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.254;
 option subnet-mask 255.255.255.0;
 option domain-search "example.com";
 option domain-name-servers 192.168.1.1;
 option time-offset -18000; # Eastern Standard Time
	range 192.168.1.10 192.168.1.100;
}

				To configure a DHCP server that leases a dynamic IP address to a system within a subnet, modify the example values from Example 9.2, “Range Parameter” [Draft]. It declares a default lease time, maximum lease time, and network configuration values for the clients. This example assigns IP addresses in the range 192.168.1.10 and 192.168.1.100 to client systems.
			

 ⁠Example 9.2. Range Parameter [Draft]
default-lease-time 600;
max-lease-time 7200;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option routers 192.168.1.254;
option domain-name-servers 192.168.1.1, 192.168.1.2;
option domain-search "example.com";
subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.10 192.168.1.100;
}

				To assign an IP address to a client based on the MAC address of the network interface card, use the hardware ethernet parameter within a host declaration. As demonstrated in Example 9.3, “Static IP Address Using DHCP” [Draft], the host apex declaration specifies that the network interface card with the MAC address 00:A0:78:8E:9E:AA always receives the IP address 192.168.1.4.
			

				Note that you can also use the optional parameter host-name to assign a host name to the client.
			

 ⁠Example 9.3. Static IP Address Using DHCP [Draft]
host apex {
 option host-name "apex.example.com";
 hardware ethernet 00:A0:78:8E:9E:AA;
 fixed-address 192.168.1.4;
}

				All subnets that share the same physical network should be declared within a shared-network declaration as shown in Example 9.4, “Shared-network Declaration” [Draft]. Parameters within the shared-network, but outside the enclosed subnet declarations, are considered to be global parameters. The name assigned to shared-network must be a descriptive title for the network, such as using the title “test-lab” to describe all the subnets in a test lab environment.
			

 ⁠Example 9.4. Shared-network Declaration [Draft]
shared-network name {
 option domain-search "test.redhat.com";
 option domain-name-servers ns1.redhat.com, ns2.redhat.com;
 option routers 192.168.0.254;
 #more parameters for EXAMPLE shared-network
 subnet 192.168.1.0 netmask 255.255.252.0 {
 #parameters for subnet
 range 192.168.1.1 192.168.1.254;
 }
 subnet 192.168.2.0 netmask 255.255.252.0 {
 #parameters for subnet
 range 192.168.2.1 192.168.2.254;
 }
}

				As demonstrated in Example 9.5, “Group Declaration” [Draft], the group declaration is used to apply global parameters to a group of declarations. For example, shared networks, subnets, and hosts can be grouped.
			

 ⁠Example 9.5. Group Declaration [Draft]
group {
 option routers 192.168.1.254;
 option subnet-mask 255.255.255.0;
 option domain-search "example.com";
 option domain-name-servers 192.168.1.1;
 option time-offset -18000; # Eastern Standard Time
 host apex {
 option host-name "apex.example.com";
 hardware ethernet 00:A0:78:8E:9E:AA;
 fixed-address 192.168.1.4;
 }
 host raleigh {
 option host-name "raleigh.example.com";
 hardware ethernet 00:A1:DD:74:C3:F2;
 fixed-address 192.168.1.6;
 }
}

Using the Example Configuration File [Draft]

					You can use the provided example configuration file as a starting point and add custom configuration options to it. To copy this file to the proper location, use the following command as root:
				
~]# cp /usr/share/doc/dhcp-version_number/dhcpd.conf.example /etc/dhcp/dhcpd.conf

					... where version_number is the DHCP version number.
				

				For a complete list of option statements and what they do, see the dhcp-options(5) man page.
			

 ⁠9.2.2. Lease Database [Draft]

				On the DHCP server, the file /var/lib/dhcpd/dhcpd.leases stores the DHCP client lease database. Do not change this file. DHCP lease information for each recently assigned IP address is automatically stored in the lease database. The information includes the length of the lease, to whom the IP address has been assigned, the start and end dates for the lease, and the MAC address of the network interface card that was used to retrieve the lease.
			

				All times in the lease database are in Coordinated Universal Time (UTC), not local time.
			

				The lease database is recreated from time to time so that it is not too large. First, all known leases are saved in a temporary lease database. The dhcpd.leases file is renamed dhcpd.leases~ and the temporary lease database is written to dhcpd.leases.
			

				The DHCP daemon could be killed or the system could crash after the lease database has been renamed to the backup file but before the new file has been written. If this happens, the dhcpd.leases file does not exist, but it is required to start the service. Do not create a new lease file. If you do, all old leases are lost which causes many problems. The correct solution is to rename the dhcpd.leases~ backup file to dhcpd.leases and then start the daemon.
			

 ⁠9.2.3. Starting and Stopping the Server [Draft]

Starting the DHCP Server for the First Time [Draft]

					When the DHCP server is started for the first time, it fails unless the dhcpd.leases file exists. You can use the command touch /var/lib/dhcpd/dhcpd.leases to create the file if it does not exist. If the same server is also running BIND as a DNS server, this step is not necessary, as starting the named service automatically checks for a dhcpd.leases file.
				

					Do not create a new lease file on a system that was previously running. If you do, all old leases are lost which causes many problems. The correct solution is to rename the dhcpd.leases~ backup file to dhcpd.leases and then start the daemon.
				

				To start the DHCP service, use the following command:
			
systemctl start dhcpd.service

				To stop the DHCP server, type:
			
systemctl stop dhcpd.service

				By default, the DHCP service does not start at boot time. To configure the daemon to start automatically at boot time, run:
			
systemctl enable dhcpd.service

				
			

				If more than one network interface is attached to the system, but the DHCP server should only listen for DHCP requests on one of the interfaces, configure the DHCP server to listen only on that device. The DHCP daemon will only listen on interfaces for which it finds a subnet declaration in the /etc/dhcp/dhcpd.conf file.
			

				This is useful for a firewall machine with two network cards. One network card can be configured as a DHCP client to retrieve an IP address to the Internet. The other network card can be used as a DHCP server for the internal network behind the firewall. Specifying only the network card connected to the internal network makes the system more secure because users can not connect to the daemon via the Internet.
			

				To specify command-line options, copy and then edit the dhcpd.service file as the root user. For example, as follows:
~]# cp /usr/lib/systemd/system/dhcpd.service /etc/systemd/system/
~]# vi /etc/systemd/system/dhcpd.service

				 Edit the line under section [Service]: ExecStart=/usr/sbin/dhcpd -f -cf /etc/dhcp/dhcpd.conf -user dhcpd -group dhcpd --no-pid your_interface_name(s)
 Then, as the root user, restart the service:
~]# systemctl --system daemon-reload
~]# systemctl restart dhcpd

			

				Command line options can be appended to ExecStart=/usr/sbin/dhcpd in the /etc/systemd/system/dhcpd.service unit file under section [Service]. They include:
			
	
						-p portnum — Specifies the UDP port number on which dhcpd should listen. The default is port 67. The DHCP server transmits responses to the DHCP clients at a port number one greater than the UDP port specified. For example, if the default port 67 is used, the server listens on port 67 for requests and responds to the client on port 68. If a port is specified here and the DHCP relay agent is used, the same port on which the DHCP relay agent should listen must be specified. See Section 9.3, “DHCP Relay Agent” [Draft] for details.
					

	
						-f — Runs the daemon as a foreground process. This is mostly used for debugging.
					

	
						-d — Logs the DHCP server daemon to the standard error descriptor. This is mostly used for debugging. If this is not specified, the log is written to /var/log/messages.
					

	
						-cf filename — Specifies the location of the configuration file. The default location is /etc/dhcp/dhcpd.conf.
					

	
						-lf filename — Specifies the location of the lease database file. If a lease database file already exists, it is very important that the same file be used every time the DHCP server is started. It is strongly recommended that this option only be used for debugging purposes on non-production machines. The default location is /var/lib/dhcpd/dhcpd.leases.
					

	
						-q — Do not print the entire copyright message when starting the daemon.
					

 ⁠9.3. DHCP Relay Agent [Draft]

			The DHCP Relay Agent (dhcrelay) enables the relay of DHCP and BOOTP requests from a subnet with no DHCP server on it to one or more DHCP servers on other subnets.
		

			When a DHCP client requests information, the DHCP Relay Agent forwards the request to the list of DHCP servers specified when the DHCP Relay Agent is started. When a DHCP server returns a reply, the reply is broadcast or unicast on the network that sent the original request.
		

			The DHCP Relay Agent for IPv4, dhcrelay, listens for DHCPv4 and BOOTP requests on all interfaces unless the interfaces are specified in /etc/sysconfig/dhcrelay with the INTERFACES directive. See Section 9.3.2, “Configure dhcrelay as a DHCPv6 relay agent” [Draft]. The DHCP Relay Agent for IPv6, dhcrelay6, does not have this default behavior and interfaces to listen for DHCPv6 requests must be specified. See Section 9.3.2, “Configure dhcrelay as a DHCPv6 relay agent” [Draft].
		

			dhcrelay can either be run as a DHCPv4 and BOOTP relay agent (by default) or as a DHCPv6 relay agent (with -6 argument). To see the usage message, issue the command dhcrelay -h.
		

 ⁠9.3.1. Configure dhcrelay as a DHCPv4 and BOOTP relay agent [Draft]

				To run dhcrelay in DHCPv4 and BOOTP mode specify the servers to which the requests should be forwarded to. Copy and then edit the dhcrelay.service file as the root user:
~]# cp /lib/systemd/system/dhcrelay.service /etc/systemd/system/
~]# vi /etc/systemd/system/dhcrelay.service

			

				Edit the ExecStart option under section [Service] and add one or more server IPv4 addresses to the end of the line, for example: ExecStart=/usr/sbin/dhcrelay -d --no-pid 192.168.1.1

			

				If you also want to specify interfaces where the DHCP Relay Agent listens for DHCP requests, add them to the ExecStart option with -i argument (otherwise it will listen on all interfaces), for example: ExecStart=/usr/sbin/dhcrelay -d --no-pid 192.168.1.1 -i em1
 For other options see the dhcrelay(8) man page.
			

				To activate the changes made, as the root user, restart the service:
~]# systemctl --system daemon-reload
~]# systemctl restart dhcrelay

			

 ⁠9.3.2. Configure dhcrelay as a DHCPv6 relay agent [Draft]

				To run dhcrelay in DHCPv6 mode add the -6 argument and specify the “lower interface” (on which queries will be received from clients or from other relay agents) and the “upper interface” (to which queries from clients and other relay agents should be forwarded). Copy dhcrelay.service to dhcrelay6.service and edit it as the root user:
~]# cp /lib/systemd/system/dhcrelay.service /etc/systemd/system/dhcrelay6.service
~]# vi /etc/systemd/system/dhcrelay6.service

			

				Edit the ExecStart option under section [Service] add -6 argument and add the “lower interface” and “upper interface” interface, for example: ExecStart=/usr/sbin/dhcrelay -d --no-pid -6 -l em1 -u em2
 For other options see the dhcrelay(8) man page.
			

				To activate the changes made, as the root user, restart the service:
~]# systemctl --system daemon-reload
~]# systemctl restart dhcrelay6

			

 ⁠9.4. Configuring a Multihomed DHCP Server [Draft]

			A multihomed DHCP server serves multiple networks, that is, multiple subnets. The examples in these sections detail how to configure a DHCP server to serve multiple networks, select which network interfaces to listen on, and how to define network settings for systems that move networks.
		

			Before making any changes, back up the existing /etc/dhcp/dhcpd.conf file.
		

			The DHCP daemon will only listen on interfaces for which it finds a subnet declaration in the /etc/dhcp/dhcpd.conf file.
		

			The following is a basic /etc/dhcp/dhcpd.conf file, for a server that has two network interfaces, eth0 in a 10.0.0.0/24 network, and eth1 in a 172.16.0.0/24 network. Multiple subnet declarations allow you to define different settings for multiple networks:
		
default-lease-time 600;
max-lease-time 7200;
subnet 10.0.0.0 netmask 255.255.255.0 {
	option subnet-mask 255.255.255.0;
	option routers 10.0.0.1;
	range 10.0.0.5 10.0.0.15;
}
subnet 172.16.0.0 netmask 255.255.255.0 {
	option subnet-mask 255.255.255.0;
	option routers 172.16.0.1;
	range 172.16.0.5 172.16.0.15;
}
	 subnet 10.0.0.0 netmask 255.255.255.0;
	
						A subnet declaration is required for every network your DHCP server is serving. Multiple subnets require multiple subnet declarations. If the DHCP server does not have a network interface in a range of a subnet declaration, the DHCP server does not serve that network.
					

						If there is only one subnet declaration, and no network interfaces are in the range of that subnet, the DHCP daemon fails to start, and an error such as the following is logged to /var/log/messages:
					
dhcpd: No subnet declaration for eth0 (0.0.0.0).
dhcpd: ** Ignoring requests on eth0. If this is not what
dhcpd: you want, please write a subnet declaration
dhcpd: in your dhcpd.conf file for the network segment
dhcpd: to which interface eth1 is attached. **
dhcpd:
dhcpd:
dhcpd: Not configured to listen on any interfaces!

	 option subnet-mask 255.255.255.0;
	
						The option subnet-mask option defines a subnet mask, and overrides the netmask value in the subnet declaration. In simple cases, the subnet and netmask values are the same.
					

	 option routers 10.0.0.1;
	
						The option routers option defines the default gateway for the subnet. This is required for systems to reach internal networks on a different subnet, as well as external networks.
					

	 range 10.0.0.5 10.0.0.15;
	
						The range option specifies the pool of available IP addresses. Systems are assigned an address from the range of specified IP addresses.
					

			For further information, see the dhcpd.conf(5) man page.
		

 ⁠9.4.1. Host Configuration [Draft]

				Before making any changes, back up the existing /etc/sysconfig/dhcpd and /etc/dhcp/dhcpd.conf files.
			
Configuring a Single System for Multiple Networks

					The following /etc/dhcp/dhcpd.conf example creates two subnets, and configures an IP address for the same system, depending on which network it connects to:
				
default-lease-time 600;
max-lease-time 7200;
subnet 10.0.0.0 netmask 255.255.255.0 {
	option subnet-mask 255.255.255.0;
	option routers 10.0.0.1;
	range 10.0.0.5 10.0.0.15;
}
subnet 172.16.0.0 netmask 255.255.255.0 {
	option subnet-mask 255.255.255.0;
	option routers 172.16.0.1;
	range 172.16.0.5 172.16.0.15;
}
host example0 {
	hardware ethernet 00:1A:6B:6A:2E:0B;
	fixed-address 10.0.0.20;
}
host example1 {
	hardware ethernet 00:1A:6B:6A:2E:0B;
	fixed-address 172.16.0.20;
}
	 host example0
	
							The host declaration defines specific parameters for a single system, such as an IP address. To configure specific parameters for multiple hosts, use multiple host declarations.
						

							Most DHCP clients ignore the name in host declarations, and as such, this name can be anything, as long as it is unique to other host declarations. To configure the same system for multiple networks, use a different name for each host declaration, otherwise the DHCP daemon fails to start. Systems are identified by the hardware ethernet option, not the name in the host declaration.
						

	 hardware ethernet 00:1A:6B:6A:2E:0B;
	
							The hardware ethernet option identifies the system. To find this address, run the ip link command.
						

	 fixed-address 10.0.0.20;
	
							The fixed-address option assigns a valid IP address to the system specified by the hardware ethernet option. This address must be outside the IP address pool specified with the range option.
						

				If option statements do not end with a semicolon, the DHCP daemon fails to start, and an error such as the following is logged to /var/log/messages:
			
/etc/dhcp/dhcpd.conf line 20: semicolon expected.
dhcpd: }
dhcpd: ^
dhcpd: /etc/dhcp/dhcpd.conf line 38: unexpected end of file
dhcpd:
dhcpd: ^
dhcpd: Configuration file errors encountered -- exiting
Configuring Systems with Multiple Network Interfaces

					The following host declarations configure a single system, which has multiple network interfaces, so that each interface receives the same IP address. This configuration will not work if both network interfaces are connected to the same network at the same time:
				
host interface0 {
	hardware ethernet 00:1a:6b:6a:2e:0b;
	fixed-address 10.0.0.18;
}
host interface1 {
	hardware ethernet 00:1A:6B:6A:27:3A;
	fixed-address 10.0.0.18;
}

				For this example, interface0 is the first network interface, and interface1 is the second interface. The different hardware ethernet options identify each interface.
			

				If such a system connects to another network, add more host declarations, remembering to:
			
	
						assign a valid fixed-address for the network the host is connecting to.
					

	
						make the name in the host declaration unique.
					

				When a name given in a host declaration is not unique, the DHCP daemon fails to start, and an error such as the following is logged to /var/log/messages:
			
dhcpd: /etc/dhcp/dhcpd.conf line 31: host interface0: already exists
dhcpd: }
dhcpd: ^
dhcpd: Configuration file errors encountered -- exiting

				This error was caused by having multiple host interface0 declarations defined in /etc/dhcp/dhcpd.conf.
			

 ⁠9.5. DHCP for IPv6 (DHCPv6) [Draft]

			The ISC DHCP includes support for IPv6 (DHCPv6) since the 4.x release with a DHCPv6 server, client, and relay agent functionality. The agents support both IPv4 and IPv6, however the agents can only manage one protocol at a time; for dual support they must be started separately for IPv4 and IPv6. For example, configure both DHCPv4 and DHCPv6 by editing their respective configuration files /etc/dhcp/dhcpd.conf and /etc/dhcp/dhcpd6.conf and then issue the following commands:
~]# systemctl start dhcpd
~]# systemctl start dhcpd6

		

			The DHCPv6 server configuration file can be found at /etc/dhcp/dhcpd6.conf.
		

			The example server configuration file can be found at /usr/share/doc/dhcp/dhcpd6.conf.example.
		

			A simple DHCPv6 server configuration file can look like this:
		
subnet6 2001:db8:0:1::/64 {
 range6 2001:db8:0:1::129 2001:db8:0:1::254;
 option dhcp6.name-servers fec0:0:0:1::1;
 option dhcp6.domain-search "domain.example";
}

 ⁠9.6. Additional Resources [Draft]

			For additional information, see The DHCP Handbook; Ralph Droms and Ted Lemon; 2003 or the following resources.
		

 ⁠9.6.1. Installed Documentation [Draft]

	
						dhcpd(8) man page — Describes how the DHCP daemon works.
					

	
						dhcpd.conf(5) man page — Explains how to configure the DHCP configuration file; includes some examples.
					

	
						dhcpd.leases(5) man page — Describes a persistent database of leases.
					

	
						dhcp-options(5) man page — Explains the syntax for declaring DHCP options in dhcpd.conf; includes some examples.
					

	
						dhcrelay(8) man page — Explains the DHCP Relay Agent and its configuration options.
					

	
						/usr/share/doc/dhcp/ — Contains example configuration files.
					

	
						/usr/share/doc/dhcp-common/ — Contains README files, and release notes for current versions of the DHCP service.
					

 ⁠Chapter 10. DNS Servers [Draft]

		DNS (Domain Name System), is a distributed database system that is used to associate host names with their respective IP addresses. For users, this has the advantage that they can refer to machines on the network by names that are usually easier to remember than the numerical network addresses. For system administrators, using a DNS server, also known as a nameserver, enables changing the IP address for a host without ever affecting the name-based queries. The use of the DNS databases is not only for resolving IP addresses to domain names and their use is becoming broader and broader as DNSSEC is deployed.
	

 ⁠10.1. Introduction to DNS [Draft]

			DNS is usually implemented using one or more centralized servers that are authoritative for certain domains. When a client host requests information from a nameserver, it usually connects to port 53. The nameserver then attempts to resolve the name requested. If the nameserver is configured to be a recursive name servers and it does not have an authoritative answer, or does not already have the answer cached from an earlier query, it queries other nameservers, called root nameservers, to determine which nameservers are authoritative for the name in question, and then queries them to get the requested name. Nameservers configured as purely authoritative, with recursion disabled, will not do lookups on behalf of clients.
		

 ⁠10.1.1. Nameserver Zones [Draft]

				In a DNS server, all information is stored in basic data elements called resource records (RR). Resource records are defined in RFC 1034. The domain names are organized into a tree structure. Each level of the hierarchy is divided by a period (.). For example: The root domain, denoted by ., is the root of the DNS tree, which is at level zero. The domain name com, referred to as the top-level domain (TLD) is a child of the root domain (.) so it is the first level of the hierarchy. The domain name example.com is at the second level of the hierarchy.
			

 ⁠Example 10.1. A Simple Resource Record [Draft]

					An example of a simple resource record (RR):
				
example.com. 86400 IN A 192.0.2.1

					The domain name, example.com, is the owner for the RR. The value 86400 is the time to live (TTL). The letters IN, meaning “the Internet system”, indicate the class of the RR. The letter A indicates the type of RR (in this example, a host address). The host address 192.0.2.1 is the data contained in the final section of this RR. This one line example is a RR. A set of RRs with the same type, owner, and class is called a resource record set (RRSet).
				

				Zones are defined on authoritative nameservers through the use of zone files, which contain definitions of the resource records in each zone. Zone files are stored on primary nameservers (also called master nameservers), where changes are made to the files, and secondary nameservers (also called slave nameservers), which receive zone definitions from the primary nameservers. Both primary and secondary nameservers are authoritative for the zone and look the same to clients. Depending on the configuration, any nameserver can also serve as a primary or secondary server for multiple zones at the same time.
			

				Note that administrators of DNS and DHCP servers, as well as any provisioning applications, should agree on the host name format used in an organization. See Section 3.1.1, “Recommended Naming Practices” [Draft] for more information on the format of host names.
			

 ⁠10.1.2. Nameserver Types [Draft]

				There are two nameserver configuration types:
			
	 authoritative
	
							Authoritative nameservers answer to resource records that are part of their zones only. This category includes both primary (master) and secondary (slave) nameservers.
						

	 recursive
	
							Recursive nameservers offer resolution services, but they are not authoritative for any zone. Answers for all resolutions are cached in a memory for a fixed period of time, which is specified by the retrieved resource record.
						

				Although a nameserver can be both authoritative and recursive at the same time, it is recommended not to combine the configuration types. To be able to perform their work, authoritative servers should be available to all clients all the time. On the other hand, since the recursive lookup takes far more time than authoritative responses, recursive servers should be available to a restricted number of clients only, otherwise they are prone to distributed denial of service (DDoS) attacks.
			

 ⁠10.1.3. BIND as a Nameserver [Draft]

				BIND consists of a set of DNS-related programs. It contains a nameserver called named, an administration utility called rndc, and a debugging tool called dig. See Fedora 20 System Administrator's Guide for more information on how to run a service in Fedora.
			

 ⁠10.2. BIND [Draft]

		This section covers BIND (Berkeley Internet Name Domain), the DNS server included in Fedora. It focuses on the structure of its configuration files, and describes how to administer it both locally and remotely.
	

 ⁠10.2.1. Empty Zones [Draft]

			BIND configures a number of “empty zones” to prevent recursive servers from sending unnecessary queries to Internet servers that cannot handle them (thus creating delays and SERVFAIL responses to clients who query for them). These empty zones ensure that immediate and authoritative NXDOMAIN responses are returned instead. The configuration option empty-zones-enable controls whether or not empty zones are created, whilst the option disable-empty-zone can be used in addition to disable one or more empty zones from the list of default prefixes that would be used.
		

			The number of empty zones created for RFC 1918 prefixes has been increased, and users of BIND 9.9 and above will see the RFC 1918 empty zones both when empty-zones-enable is unspecified (defaults to yes), and when it is explicitly set to yes.
		

 ⁠10.2.2. Configuring the named Service [Draft]

			When the named service is started, it reads the configuration from the files as described in Table 10.1, “The named Service Configuration Files” [Draft].
		

 ⁠Table 10.1. The named Service Configuration Files [Draft]
	 Path 	 Description
	 /etc/named.conf 	 The main configuration file.
	 /etc/named/ 	 An auxiliary directory for configuration files that are included in the main configuration file.

			The configuration file consists of a collection of statements with nested options surrounded by opening and closing curly brackets ({ and }). Note that when editing the file, you have to be careful not to make any syntax error, otherwise the named service will not start. A typical /etc/named.conf file is organized as follows:
		
statement-1 ["statement-1-name"] [statement-1-class] {
 option-1;
 option-2;
 option-N;
};
statement-2 ["statement-2-name"] [statement-2-class] {
 option-1;
 option-2;
 option-N;
};
statement-N ["statement-N-name"] [statement-N-class] {
 option-1;
 option-2;
 option-N;
};
Running BIND in a chroot environment [Draft]

				If you have installed the bind-chroot package, the BIND service will run in the chroot environment. In that case, the initialization script will mount the above configuration files using the mount --bind command, so that you can manage the configuration outside this environment. There is no need to copy anything into the /var/named/chroot/ directory because it is mounted automatically. This simplifies maintenance since you do not need to take any special care of BIND configuration files if it is run in a chroot environment. You can organize everything as you would with BIND not running in a chroot environment.
			

				The following directories are automatically mounted into /var/named/chroot/ if they are empty in the /var/named/chroot/ directory. They must be kept empty if you want them to be mounted into /var/named/chroot/:
					
							/etc/named
						

	
							/etc/pki/dnssec-keys
						

	
							/run/named
						

	
							/var/named
						

	
							/usr/lib64/bind or /usr/lib/bind (architecture dependent).
						

			

				The following files are also mounted if the target file does not exist in /var/named/chroot/:
					
							/etc/named.conf
						

	
							/etc/rndc.conf
						

	
							/etc/rndc.key
						

	
							/etc/named.rfc1912.zones
						

	
							/etc/named.dnssec.keys
						

	
							/etc/named.iscdlv.key
						

	
							/etc/named.root.key
						

			

Important [Draft]

				Editing files which have been mounted in a chroot environment requires creating a backup copy and then editing the original file. Alternatively, use an editor with “edit-a-copy” mode disabled. For example, to edit the BIND's configuration file, /etc/named.conf, with Vim while it is running in a chroot environment, issue the following command as root:
~]# vim -c "set backupcopy=yes" /etc/named.conf

			

 ⁠10.2.2.1. Installing BIND in a chroot Environment [Draft]

				To install BIND to run in a chroot environment, issue the following command as root:
~]# yum install bind-chroot

			

				To enable the named-chroot service, first check if the named service is running by issuing the following command:
~]$ systemctl status named

				 If it is running, it must be disabled.
			

				To disable named, issue the following commands as root:
~]# systemctl stop named

				
~]# systemctl disable named

				 Then, to enable the named-chroot service, issue the following commands as root:
~]# systemctl enable named-chroot

				
~]# systemctl start named-chroot

			

				To check the status of the named-chroot service, issue the following command as root:
~]# systemctl status named-chroot

			

 ⁠10.2.2.2. Common Statement Types [Draft]

				The following types of statements are commonly used in /etc/named.conf:
			
	 acl
	
							The acl (Access Control List) statement allows you to define groups of hosts, so that they can be permitted or denied access to the nameserver. It takes the following form:
						
acl acl-name {
 match-element;
 ...
};

							The acl-name statement name is the name of the access control list, and the match-element option is usually an individual IP address (such as 10.0.1.1) or a Classless Inter-Domain Routing (CIDR) network notation (for example, 10.0.1.0/24). For a list of already defined keywords, see Table 10.2, “Predefined Access Control Lists” [Draft].
						

 ⁠Table 10.2. Predefined Access Control Lists [Draft]
	 Keyword 	 Description
	 any 	 Matches every IP address.
	 localhost 	 Matches any IP address that is in use by the local system.
	 localnets 	 Matches any IP address on any network to which the local system is connected.
	 none 	 Does not match any IP address.

							The acl statement can be especially useful in conjunction with other statements such as options. Example 10.2, “Using acl in Conjunction with Options” [Draft] defines two access control lists, black-hats and red-hats, and adds black-hats on the blacklist while granting red-hats normal access.
						

 ⁠Example 10.2. Using acl in Conjunction with Options [Draft]
acl black-hats {
 10.0.2.0/24;
 192.168.0.0/24;
 1234:5678::9abc/24;
};
acl red-hats {
 10.0.1.0/24;
};
options {
 blackhole { black-hats; };
 allow-query { red-hats; };
 allow-query-cache { red-hats; };
};

	 include
	
							The include statement allows you to include files in the /etc/named.conf, so that potentially sensitive data can be placed in a separate file with restricted permissions. It takes the following form:
						
include "file-name"

							The file-name statement name is an absolute path to a file.
						

 ⁠Example 10.3. Including a File to /etc/named.conf [Draft]
include "/etc/named.rfc1912.zones";

	 options
	
							The options statement allows you to define global server configuration options as well as to set defaults for other statements. It can be used to specify the location of the named working directory, the types of queries allowed, and much more. It takes the following form:
						
options {
 option;
 ...
};

							For a list of frequently used option directives, see Table 10.3, “Commonly Used Configuration Options” [Draft] below.
						

 ⁠Table 10.3. Commonly Used Configuration Options [Draft]
	 Option 	 Description
	 allow-query 	 Specifies which hosts are allowed to query the nameserver for authoritative resource records. It accepts an access control list, a collection of IP addresses, or networks in the CIDR notation. All hosts are allowed by default.
	 allow-query-cache 	 Specifies which hosts are allowed to query the nameserver for non-authoritative data such as recursive queries. Only localhost and localnets are allowed by default.
	 blackhole 	 Specifies which hosts are not allowed to query the nameserver. This option should be used when a particular host or network floods the server with requests. The default option is none.
	 directory 	 Specifies a working directory for the named service. The default option is /var/named/.
	 disable-empty-zone 	 Used to disable one or more empty zones from the list of default prefixes that would be used. Can be specified in the options statement and also in view statements. It can be used multiple times.
	 dnssec-enable 	 Specifies whether to return DNSSEC related resource records. The default option is yes.
	 dnssec-validation 	 Specifies whether to prove that resource records are authentic via DNSSEC. The default option is yes.
	 empty-zones-enable 	 Controls whether or not empty zones are created. Can be specified only in the options statement.
	 forwarders 	 Specifies a list of valid IP addresses for nameservers to which the requests should be forwarded for resolution.
	 forward 	
											Specifies the behavior of the forwarders directive. It accepts the following options:
										

										 	
													first — The server will query the nameservers listed in the forwarders directive before attempting to resolve the name on its own.
												

	
													only — When unable to query the nameservers listed in the forwarders directive, the server will not attempt to resolve the name on its own.
												

										
	 listen-on 	 Specifies the IPv4 network interface on which to listen for queries. On a DNS server that also acts as a gateway, you can use this option to answer queries originating from a single network only. All IPv4 interfaces are used by default.
	 listen-on-v6 	 Specifies the IPv6 network interface on which to listen for queries. On a DNS server that also acts as a gateway, you can use this option to answer queries originating from a single network only. All IPv6 interfaces are used by default.
	 max-cache-size 	 Specifies the maximum amount of memory to be used for server caches. When the limit is reached, the server causes records to expire prematurely so that the limit is not exceeded. In a server with multiple views, the limit applies separately to the cache of each view. The default option is 32M.
	 notify 	
											Specifies whether to notify the secondary nameservers when a zone is updated. It accepts the following options:
										

										 	
													yes — The server will notify all secondary nameservers.
												

	
													no — The server will not notify any secondary nameserver.
												

	
													master-only — The server will notify primary server for the zone only.
												

	
													explicit — The server will notify only the secondary servers that are specified in the also-notify list within a zone statement.
												

										
	 pid-file 	 Specifies the location of the process ID file created by the named service.
	 recursion 	 Specifies whether to act as a recursive server. The default option is yes.
	 statistics-file 	 Specifies an alternate location for statistics files. The /var/named/named.stats file is used by default.

Note [Draft]

								The directory used by named for runtime data has been moved from the BIND default location, /var/run/named/, to a new location /run/named/. As a result, the PID file has been moved from the default location /var/run/named/named.pid to the new location /run/named/named.pid. In addition, the session-key file has been moved to /run/named/session.key. These locations need to be specified by statements in the options section. See Example 10.4, “Using the options Statement” [Draft].
							

Restrict recursive servers to selected clients only [Draft]

								To prevent distributed denial of service (DDoS) attacks, it is recommended that you use the allow-query-cache option to restrict recursive DNS services for a particular subset of clients only.
							

							Refer to the BIND 9 Administrator Reference Manual referenced in Section 10.2.8.1, “Installed Documentation” [Draft], and the named.conf manual page for a complete list of available options.
						

 ⁠Example 10.4. Using the options Statement [Draft]
options {
 allow-query { localhost; };
 listen-on port 53 { 127.0.0.1; };
 listen-on-v6 port 53 { ::1; };
 max-cache-size 256M;
 directory "/var/named";
 statistics-file "/var/named/data/named_stats.txt";

 recursion yes;
 dnssec-enable yes;
 dnssec-validation yes;

 pid-file "/run/named/named.pid";
 session-keyfile "/run/named/session.key";
};

	 zone
	
							The zone statement allows you to define the characteristics of a zone, such as the location of its configuration file and zone-specific options, and can be used to override the global options statements. It takes the following form:
						
zone zone-name [zone-class] {
 option;
 ...
};

							The zone-name attribute is the name of the zone, zone-class is the optional class of the zone, and option is a zone statement option as described in Table 10.4, “Commonly Used Options in Zone Statements” [Draft].
						

							The zone-name attribute is particularly important, as it is the default value assigned for the $ORIGIN directive used within the corresponding zone file located in the /var/named/ directory. The named daemon appends the name of the zone to any non-fully qualified domain name listed in the zone file. For example, if a zone statement defines the namespace for example.com, use example.com as the zone-name so that it is placed at the end of host names within the example.com zone file.
						

							For more information about zone files, refer to Section 10.2.3, “Editing Zone Files” [Draft].
						

 ⁠Table 10.4. Commonly Used Options in Zone Statements [Draft]
	 Option 	 Description
	 allow-query 	 Specifies which clients are allowed to request information about this zone. This option overrides global allow-query option. All query requests are allowed by default.
	 allow-transfer 	 Specifies which secondary servers are allowed to request a transfer of the zone's information. All transfer requests are allowed by default.
	 allow-update 	
											Specifies which hosts are allowed to dynamically update information in their zone. The default option is to deny all dynamic update requests.
										

										
											Note that you should be careful when allowing hosts to update information about their zone. Do not set IP addresses in this option unless the server is in the trusted network. Instead, use TSIG key as described in Section 10.2.6.3, “Transaction SIGnatures (TSIG)” [Draft].
										

										
	 file 	 Specifies the name of the file in the named working directory that contains the zone's configuration data.
	 masters 	 Specifies from which IP addresses to request authoritative zone information. This option is used only if the zone is defined as type slave.
	 notify 	
											Specifies whether to notify the secondary nameservers when a zone is updated. It accepts the following options:
										

										 	
													yes — The server will notify all secondary nameservers.
												

	
													no — The server will not notify any secondary nameserver.
												

	
													master-only — The server will notify primary server for the zone only.
												

	
													explicit — The server will notify only the secondary servers that are specified in the also-notify list within a zone statement.
												

										
	 type 	
											Specifies the zone type. It accepts the following options:
										

										 	
													delegation-only — Enforces the delegation status of infrastructure zones such as COM, NET, or ORG. Any answer that is received without an explicit or implicit delegation is treated as NXDOMAIN. This option is only applicable in TLDs (Top-Level Domain) or root zone files used in recursive or caching implementations.
												

	
													forward — Forwards all requests for information about this zone to other nameservers.
												

	
													hint — A special type of zone used to point to the root nameservers which resolve queries when a zone is not otherwise known. No configuration beyond the default is necessary with a hint zone.
												

	
													master — Designates the nameserver as authoritative for this zone. A zone should be set as the master if the zone's configuration files reside on the system.
												

	
													slave — Designates the nameserver as a slave server for this zone. Master server is specified in masters directive.
												

										

							Most changes to the /etc/named.conf file of a primary or secondary nameserver involve adding, modifying, or deleting zone statements, and only a small subset of zone statement options is usually needed for a nameserver to work efficiently.
						

							In Example 10.5, “A Zone Statement for a Primary nameserver” [Draft], the zone is identified as example.com, the type is set to master, and the named service is instructed to read the /var/named/example.com.zone file. It also allows only a secondary nameserver (192.168.0.2) to transfer the zone.
						

 ⁠Example 10.5. A Zone Statement for a Primary nameserver [Draft]
zone "example.com" IN {
 type master;
 file "example.com.zone";
 allow-transfer { 192.168.0.2; };
};

							A secondary server's zone statement is slightly different. The type is set to slave, and the masters directive is telling named the IP address of the master server.
						

							In Example 10.6, “A Zone Statement for a Secondary nameserver” [Draft], the named service is configured to query the primary server at the 192.168.0.1 IP address for information about the example.com zone. The received information is then saved to the /var/named/slaves/example.com.zone file. Note that you have to put all slave zones in the /var/named/slaves/ directory, otherwise the service will fail to transfer the zone.
						

 ⁠Example 10.6. A Zone Statement for a Secondary nameserver [Draft]
zone "example.com" {
 type slave;
 file "slaves/example.com.zone";
 masters { 192.168.0.1; };
};

 ⁠10.2.2.3. Other Statement Types [Draft]

				The following types of statements are less commonly used in /etc/named.conf:
			
	 controls
	
							The controls statement allows you to configure various security requirements necessary to use the rndc command to administer the named service.
						

							Refer to Section 10.2.4, “Using the rndc Utility” [Draft] for more information on the rndc utility and its usage.
						

	 key
	
							The key statement allows you to define a particular key by name. Keys are used to authenticate various actions, such as secure updates or the use of the rndc command. Two options are used with key:
						
	
									algorithm algorithm-name — The type of algorithm to be used (for example, hmac-md5).
								

	
									secret "key-value" — The encrypted key.
								

							Refer to Section 10.2.4, “Using the rndc Utility” [Draft] for more information on the rndc utility and its usage.
						

	 logging
	
							The logging statement allows you to use multiple types of logs, so called channels. By using the channel option within the statement, you can construct a customized type of log with its own file name (file), size limit (size), version number (version), and level of importance (severity). Once a customized channel is defined, a category option is used to categorize the channel and begin logging when the named service is restarted.
						

							By default, named sends standard messages to the rsyslog daemon, which places them in /var/log/messages. Several standard channels are built into BIND with various severity levels, such as default_syslog (which handles informational logging messages) and default_debug (which specifically handles debugging messages). A default category, called default, uses the built-in channels to do normal logging without any special configuration.
						

							Customizing the logging process can be a very detailed process and is beyond the scope of this chapter. For information on creating custom BIND logs, refer to the BIND 9 Administrator Reference Manual referenced in Section 10.2.8.1, “Installed Documentation” [Draft].
						

	 server
	
							The server statement allows you to specify options that affect how the named service should respond to remote nameservers, especially with regard to notifications and zone transfers.
						

							The transfer-format option controls the number of resource records that are sent with each message. It can be either one-answer (only one resource record), or many-answers (multiple resource records). Note that while the many-answers option is more efficient, it is not supported by older versions of BIND.
						

	 trusted-keys
	
							The trusted-keys statement allows you to specify assorted public keys used for secure DNS (DNSSEC). Refer to Section 10.2.6.4, “DNS Security Extensions (DNSSEC)” [Draft] for more information on this topic.
						

	 view
	
							The view statement allows you to create special views depending upon which network the host querying the nameserver is on. This allows some hosts to receive one answer regarding a zone while other hosts receive totally different information. Alternatively, certain zones may only be made available to particular trusted hosts while non-trusted hosts can only make queries for other zones.
						

							Multiple views can be used as long as their names are unique. The match-clients option allows you to specify the IP addresses that apply to a particular view. If the options statement is used within a view, it overrides the already configured global options. Finally, most view statements contain multiple zone statements that apply to the match-clients list.
						

							Note that the order in which the view statements are listed is important, as the first statement that matches a particular client's IP address is used. For more information on this topic, refer to Section 10.2.6.1, “Multiple Views” [Draft].
						

 ⁠10.2.2.4. Comment Tags [Draft]

				Additionally to statements, the /etc/named.conf file can also contain comments. Comments are ignored by the named service, but can prove useful when providing additional information to a user. The following are valid comment tags:
			
	 //
	
							Any text after the // characters to the end of the line is considered a comment. For example:
						
notify yes; // notify all secondary nameservers

	 #
	
							Any text after the # character to the end of the line is considered a comment. For example:
						
notify yes; # notify all secondary nameservers

	/* and */
	
							Any block of text enclosed in /* and */ is considered a comment. For example:
						
notify yes; /* notify all secondary nameservers */

 ⁠10.2.3. Editing Zone Files [Draft]

			As outlined in Section 10.1.1, “Nameserver Zones” [Draft], zone files contain information about a namespace. They are stored in the named working directory located in /var/named/ by default. Each zone file is named according to the file option in the zone statement, usually in a way that relates to the domain in and identifies the file as containing zone data, such as example.com.zone.
		

 ⁠Table 10.5. The named Service Zone Files [Draft]
	 Path 	 Description
	 /var/named/ 	 The working directory for the named service. The nameserver is not allowed to write to this directory.
	 /var/named/slaves/ 	 The directory for secondary zones. This directory is writable by the named service.
	 /var/named/dynamic/ 	 The directory for other files, such as dynamic DNS (DDNS) zones or managed DNSSEC keys. This directory is writable by the named service.
	 /var/named/data/ 	 The directory for various statistics and debugging files. This directory is writable by the named service.

			A zone file consists of directives and resource records. Directives tell the nameserver to perform tasks or apply special settings to the zone, resource records define the parameters of the zone and assign identities to individual hosts. While the directives are optional, the resource records are required in order to provide name service to a zone.
		

			All directives and resource records should be entered on individual lines.
		

 ⁠10.2.3.1. Common Directives [Draft]

				Directives begin with the dollar sign character ($) followed by the name of the directive, and usually appear at the top of the file. The following directives are commonly used in zone files:
			
	 $INCLUDE
	
							The $INCLUDE directive allows you to include another file at the place where it appears, so that other zone settings can be stored in a separate zone file.
						

 ⁠Example 10.7. Using the $INCLUDE Directive [Draft]
$INCLUDE /var/named/penguin.example.com

	 $ORIGIN
	
							The $ORIGIN directive allows you to append the domain name to unqualified records, such as those with the host name only. Note that the use of this directive is not necessary if the zone is specified in /etc/named.conf, since the zone name is used by default.
						

							In Example 10.8, “Using the $ORIGIN Directive” [Draft], any names used in resource records that do not end in a trailing period (the . character) are appended with example.com.
						

 ⁠Example 10.8. Using the $ORIGIN Directive [Draft]
$ORIGIN example.com.

	 $TTL
	
							The $TTL directive allows you to set the default Time to Live (TTL) value for the zone, that is, how long is a zone record valid. Each resource record can contain its own TTL value, which overrides this directive.
						

							Increasing this value allows remote nameservers to cache the zone information for a longer period of time, reducing the number of queries for the zone and lengthening the amount of time required to propagate resource record changes.
						

 ⁠Example 10.9. Using the $TTL Directive [Draft]
$TTL 1D

 ⁠10.2.3.2. Common Resource Records [Draft]

				The following resource records are commonly used in zone files:
			
	 A
	
							The Address record specifies an IP address to be assigned to a name. It takes the following form:
						
hostname IN A IP-address

							If the hostname value is omitted, the record will point to the last specified hostname.
						

							In Example 10.10, “Using the A Resource Record” [Draft], the requests for server1.example.com are pointed to 10.0.1.3 or 10.0.1.5.
						

 ⁠Example 10.10. Using the A Resource Record [Draft]
server1 IN A 10.0.1.3
 IN A 10.0.1.5

	 CNAME
	
							The Canonical Name record maps one name to another. Because of this, this type of record is sometimes referred to as an alias record. It takes the following form:
						
alias-name IN CNAME real-name

							CNAME records are most commonly used to point to services that use a common naming scheme, such as www for Web servers. However, there are multiple restrictions for their usage:
						
	
									CNAME records should not point to other CNAME records. This is mainly to avoid possible infinite loops.
								

	
									CNAME records should not contain other resource record types (such as A, NS, MX, etc.). The only exception are DNSSEC related records (RRSIG, NSEC, etc.) when the zone is signed.
								

	
									Other resource records that point to the fully qualified domain name (FQDN) of a host (NS, MX, PTR) should not point to a CNAME record.
								

							In Example 10.11, “Using the CNAME Resource Record” [Draft], the A record binds a host name to an IP address, while the CNAME record points the commonly used www host name to it.
						

 ⁠Example 10.11. Using the CNAME Resource Record [Draft]
server1 IN A 10.0.1.5
www IN CNAME server1

	 MX
	
							The Mail Exchange record specifies where the mail sent to a particular namespace controlled by this zone should go. It takes the following form:
						
IN MX preference-value email-server-name

							The email-server-name is a fully qualified domain name (FQDN). The preference-value allows numerical ranking of the email servers for a namespace, giving preference to some email systems over others. The MX resource record with the lowest preference-value is preferred over the others. However, multiple email servers can possess the same value to distribute email traffic evenly among them.
						

							In Example 10.12, “Using the MX Resource Record” [Draft], the first mail.example.com email server is preferred to the mail2.example.com email server when receiving email destined for the example.com domain.
						

 ⁠Example 10.12. Using the MX Resource Record [Draft]
example.com. IN MX 10 mail.example.com.
 IN MX 20 mail2.example.com.

	 NS
	
							The Nameserver record announces authoritative nameservers for a particular zone. It takes the following form:
						
IN NS nameserver-name

							The nameserver-name should be a fully qualified domain name (FQDN). Note that when two nameservers are listed as authoritative for the domain, it is not important whether these nameservers are secondary nameservers, or if one of them is a primary server. They are both still considered authoritative.
						

 ⁠Example 10.13. Using the NS Resource Record [Draft]
IN NS dns1.example.com.
IN NS dns2.example.com.

	 PTR
	
							The Pointer record points to another part of the namespace. It takes the following form:
						
last-IP-digit IN PTR FQDN-of-system

							The last-IP-digit directive is the last number in an IP address, and the FQDN-of-system is a fully qualified domain name (FQDN).
						

							PTR records are primarily used for reverse name resolution, as they point IP addresses back to a particular name. Refer to Section 10.2.3.4.2, “A Reverse Name Resolution Zone File” [Draft] for examples of PTR records in use.
						

	 SOA
	
							The Start of Authority record announces important authoritative information about a namespace to the nameserver. Located after the directives, it is the first resource record in a zone file. It takes the following form:
						
@ IN SOA primary-name-server hostmaster-email (
 serial-number
 time-to-refresh
 time-to-retry
 time-to-expire
 minimum-TTL)

							The directives are as follows:
						
	
									The @ symbol places the $ORIGIN directive (or the zone's name if the $ORIGIN directive is not set) as the namespace being defined by this SOA resource record.
								

	
									The primary-name-server directive is the host name of the primary nameserver that is authoritative for this domain.
								

	
									The hostmaster-email directive is the email of the person to contact about the namespace.
								

	
									The serial-number directive is a numerical value incremented every time the zone file is altered to indicate it is time for the named service to reload the zone.
								

	
									The time-to-refresh directive is the numerical value secondary nameservers use to determine how long to wait before asking the primary nameserver if any changes have been made to the zone.
								

	
									The time-to-retry directive is a numerical value used by secondary nameservers to determine the length of time to wait before issuing a refresh request in the event that the primary nameserver is not answering. If the primary server has not replied to a refresh request before the amount of time specified in the time-to-expire directive elapses, the secondary servers stop responding as an authority for requests concerning that namespace.
								

	
									In BIND 4 and 8, the minimum-TTL directive is the amount of time other nameservers cache the zone's information. In BIND 9, it defines how long negative answers are cached for. Caching of negative answers can be set to a maximum of 3 hours (3H).
								

							When configuring BIND, all times are specified in seconds. However, it is possible to use abbreviations when specifying units of time other than seconds, such as minutes (M), hours (H), days (D), and weeks (W). Table 10.6, “Seconds compared to other time units” [Draft] shows an amount of time in seconds and the equivalent time in another format.
						

 ⁠Table 10.6. Seconds compared to other time units [Draft]
	 Seconds 	 Other Time Units
	 60 	 1M
	 1800 	 30M
	 3600 	 1H
	 10800 	 3H
	 21600 	 6H
	 43200 	 12H
	 86400 	 1D
	 259200 	 3D
	 604800 	 1W
	 31536000 	 365D

 ⁠Example 10.14. Using the SOA Resource Record [Draft]
@ IN SOA dns1.example.com. hostmaster.example.com. (
 2001062501 ; serial
 21600 ; refresh after 6 hours
 3600 ; retry after 1 hour
 604800 ; expire after 1 week
 86400) ; minimum TTL of 1 day

 ⁠10.2.3.3. Comment Tags [Draft]

				Additionally to resource records and directives, a zone file can also contain comments. Comments are ignored by the named service, but can prove useful when providing additional information to the user. Any text after the semicolon character (;) to the end of the line is considered a comment. For example:
			
 604800 ; expire after 1 week

 ⁠10.2.3.4. Example Usage [Draft]

				The following examples show the basic usage of zone files.
			

 ⁠10.2.3.4.1. A Simple Zone File [Draft]

					Example 10.15, “A simple zone file” [Draft] demonstrates the use of standard directives and SOA values.
				

 ⁠Example 10.15. A simple zone file [Draft]
$ORIGIN example.com.
$TTL 86400
@ IN SOA dns1.example.com. hostmaster.example.com. (
 2001062501 ; serial
 21600 ; refresh after 6 hours
 3600 ; retry after 1 hour
 604800 ; expire after 1 week
 86400) ; minimum TTL of 1 day
;
;
 IN NS dns1.example.com.
 IN NS dns2.example.com.
dns1 IN A 10.0.1.1
 IN AAAA aaaa:bbbb::1
dns2 IN A 10.0.1.2
 IN AAAA aaaa:bbbb::2
;
;
@ IN MX 10 mail.example.com.
 IN MX 20 mail2.example.com.
mail IN A 10.0.1.5
 IN AAAA aaaa:bbbb::5
mail2 IN A 10.0.1.6
 IN AAAA aaaa:bbbb::6
;
;
; This sample zone file illustrates sharing the same IP addresses
; for multiple services:
;
services IN A 10.0.1.10
 IN AAAA aaaa:bbbb::10
 IN A 10.0.1.11
 IN AAAA aaaa:bbbb::11

ftp IN CNAME services.example.com.
www IN CNAME services.example.com.
;
;

					In this example, the authoritative nameservers are set as dns1.example.com and dns2.example.com, and are tied to the 10.0.1.1 and 10.0.1.2 IP addresses respectively using the A record.
				

					The email servers configured with the MX records point to mail and mail2 via A records. Since these names do not end in a trailing period (. character), the $ORIGIN domain is placed after them, expanding them to mail.example.com and mail2.example.com.
				

					Services available at the standard names, such as www.example.com (WWW), are pointed at the appropriate servers using the CNAME record.
				

					This zone file would be called into service with a zone statement in the /etc/named.conf similar to the following:
				
zone "example.com" IN {
 type master;
 file "example.com.zone";
 allow-update { none; };
};

 ⁠10.2.3.4.2. A Reverse Name Resolution Zone File [Draft]

					A reverse name resolution zone file is used to translate an IP address in a particular namespace into a fully qualified domain name (FQDN). It looks very similar to a standard zone file, except that the PTR resource records are used to link the IP addresses to a fully qualified domain name as shown in Example 10.16, “A reverse name resolution zone file” [Draft].
				

 ⁠Example 10.16. A reverse name resolution zone file [Draft]
$ORIGIN 1.0.10.in-addr.arpa.
$TTL 86400
@ IN SOA dns1.example.com. hostmaster.example.com. (
 2001062501 ; serial
 21600 ; refresh after 6 hours
 3600 ; retry after 1 hour
 604800 ; expire after 1 week
 86400) ; minimum TTL of 1 day
;
@ IN NS dns1.example.com.
;
1 IN PTR dns1.example.com.
2 IN PTR dns2.example.com.
;
5 IN PTR server1.example.com.
6 IN PTR server2.example.com.
;
3 IN PTR ftp.example.com.
4 IN PTR ftp.example.com.

					In this example, IP addresses 10.0.1.1 through 10.0.1.6 are pointed to the corresponding fully qualified domain name.
				

					This zone file would be called into service with a zone statement in the /etc/named.conf file similar to the following:
				
zone "1.0.10.in-addr.arpa" IN {
 type master;
 file "example.com.rr.zone";
 allow-update { none; };
};

					There is very little difference between this example and a standard zone statement, except for the zone name. Note that a reverse name resolution zone requires the first three blocks of the IP address reversed followed by .in-addr.arpa. This allows the single block of IP numbers used in the reverse name resolution zone file to be associated with the zone.
				

 ⁠10.2.4. Using the rndc Utility [Draft]

			The rndc utility is a command-line tool that allows you to administer the named service, both locally and from a remote machine. Its usage is as follows:
		
rndc [option...] command [command-option]

 ⁠10.2.4.1. Configuring the Utility [Draft]

				To prevent unauthorized access to the service, named must be configured to listen on the selected port (953 by default), and an identical key must be used by both the service and the rndc utility.
			

 ⁠Table 10.7. Relevant files [Draft]
	 Path 	 Description
	 /etc/named.conf 	 The default configuration file for the named service.
	 /etc/rndc.conf 	 The default configuration file for the rndc utility.
	 /etc/rndc.key 	 The default key location.

				The rndc configuration is located in /etc/rndc.conf. If the file does not exist, the utility will use the key located in /etc/rndc.key, which was generated automatically during the installation process using the rndc-confgen -a command.
			

				The named service is configured using the controls statement in the /etc/named.conf configuration file as described in Section 10.2.2.3, “Other Statement Types” [Draft]. Unless this statement is present, only the connections from the loopback address (127.0.0.1) will be allowed, and the key located in /etc/rndc.key will be used.
			

				For more information on this topic, refer to manual pages and the BIND 9 Administrator Reference Manual listed in Section 10.2.8, “Additional Resources” [Draft].
			
Set the correct permissions [Draft]

					To prevent unprivileged users from sending control commands to the service, make sure only root is allowed to read the /etc/rndc.key file:
				
~]# chmod o-rwx /etc/rndc.key

 ⁠10.2.4.2. Checking the Service Status [Draft]

				To check the current status of the named service, use the following command:
			
~]# rndc status
version: 9.7.0-P2-RedHat-9.7.0-5.P2.el6
CPUs found: 1
worker threads: 1
number of zones: 16
debug level: 0
xfers running: 0
xfers deferred: 0
soa queries in progress: 0
query logging is OFF
recursive clients: 0/0/1000
tcp clients: 0/100
server is up and running

 ⁠10.2.4.3. Reloading the Configuration and Zones [Draft]

				To reload both the configuration file and zones, type the following at a shell prompt:
			
~]# rndc reload
server reload successful

				This will reload the zones while keeping all previously cached responses, so that you can make changes to the zone files without losing all stored name resolutions.
			

				To reload a single zone, specify its name after the reload command, for example:
			
~]# rndc reload localhost
zone reload up-to-date

				Finally, to reload the configuration file and newly added zones only, type:
			
~]# rndc reconfig
Modifying zones with dynamic DNS [Draft]

					If you intend to manually modify a zone that uses Dynamic DNS (DDNS), make sure you run the freeze command first:
				
~]# rndc freeze localhost

					Once you are finished, run the thaw command to allow the DDNS again and reload the zone:
				
~]# rndc thaw localhost
The zone reload and thaw was successful.

 ⁠10.2.4.4. Updating Zone Keys [Draft]

				To update the DNSSEC keys and sign the zone, use the sign command. For example:
			
~]# rndc sign localhost

				Note that to sign a zone with the above command, the auto-dnssec option has to be set to maintain in the zone statement. For example:
			
zone "localhost" IN {
 type master;
 file "named.localhost";
 allow-update { none; };
 auto-dnssec maintain;
};

 ⁠10.2.4.5. Enabling the DNSSEC Validation [Draft]

				To enable the DNSSEC validation, issue the following command as root:
			
~]# rndc validation on

				Similarly, to disable this option, type:
			
~]# rndc validation off

				Refer to the options statement described in Section 10.2.2.2, “Common Statement Types” [Draft] for information on how to configure this option in /etc/named.conf.
			

 ⁠10.2.4.6. Enabling the Query Logging [Draft]

				To enable (or disable in case it is currently enabled) the query logging, issue the following command as root:
			
~]# rndc querylog

				To check the current setting, use the status command as described in Section 10.2.4.2, “Checking the Service Status” [Draft].
			

 ⁠10.2.5. Using the dig Utility [Draft]

			The dig utility is a command-line tool that allows you to perform DNS lookups and debug a nameserver configuration. Its typical usage is as follows:
		
dig [@server] [option...] name type

			Refer to Section 10.2.3.2, “Common Resource Records” [Draft] for a list of common values to use for type.
		

 ⁠10.2.5.1. Looking Up a Nameserver [Draft]

				To look up a nameserver for a particular domain, use the command in the following form:
			
dig name NS

				In Example 10.17, “A sample nameserver lookup” [Draft], the dig utility is used to display nameservers for example.com.
			

 ⁠Example 10.17. A sample nameserver lookup [Draft]
~]$ dig example.com NS

; <<>> DiG 9.7.1-P2-RedHat-9.7.1-2.P2.fc13 <<>> example.com NS
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57883
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;example.com. IN NS

;; ANSWER SECTION:
example.com. 99374 IN NS a.iana-servers.net.
example.com. 99374 IN NS b.iana-servers.net.

;; Query time: 1 msec
;; SERVER: 10.34.255.7#53(10.34.255.7)
;; WHEN: Wed Aug 18 18:04:06 2010
;; MSG SIZE rcvd: 77

 ⁠10.2.5.2. Looking Up an IP Address [Draft]

				To look up an IP address assigned to a particular domain, use the command in the following form:
			
dig name A

				In Example 10.18, “A sample IP address lookup” [Draft], the dig utility is used to display the IP address of example.com.
			

 ⁠Example 10.18. A sample IP address lookup [Draft]
~]$ dig example.com A

; <<>> DiG 9.7.1-P2-RedHat-9.7.1-2.P2.fc13 <<>> example.com A
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4849
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0

;; QUESTION SECTION:
;example.com. IN A

;; ANSWER SECTION:
example.com. 155606 IN A 192.0.32.10

;; AUTHORITY SECTION:
example.com. 99175 IN NS a.iana-servers.net.
example.com. 99175 IN NS b.iana-servers.net.

;; Query time: 1 msec
;; SERVER: 10.34.255.7#53(10.34.255.7)
;; WHEN: Wed Aug 18 18:07:25 2010
;; MSG SIZE rcvd: 93

 ⁠10.2.5.3. Looking Up a Host Name [Draft]

				To look up a host name for a particular IP address, use the command in the following form:
			
dig -x address

				In Example 10.19, “A Sample Host Name Lookup” [Draft], the dig utility is used to display the host name assigned to 192.0.32.10.
			

 ⁠Example 10.19. A Sample Host Name Lookup [Draft]
~]$ dig -x 192.0.32.10

; <<>> DiG 9.7.1-P2-RedHat-9.7.1-2.P2.fc13 <<>> -x 192.0.32.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29683
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 6

;; QUESTION SECTION:
;10.32.0.192.in-addr.arpa. IN PTR

;; ANSWER SECTION:
10.32.0.192.in-addr.arpa. 21600 IN PTR www.example.com.

;; AUTHORITY SECTION:
32.0.192.in-addr.arpa. 21600 IN NS b.iana-servers.org.
32.0.192.in-addr.arpa. 21600 IN NS c.iana-servers.net.
32.0.192.in-addr.arpa. 21600 IN NS d.iana-servers.net.
32.0.192.in-addr.arpa. 21600 IN NS ns.icann.org.
32.0.192.in-addr.arpa. 21600 IN NS a.iana-servers.net.

;; ADDITIONAL SECTION:
a.iana-servers.net. 13688 IN A 192.0.34.43
b.iana-servers.org. 5844 IN A 193.0.0.236
b.iana-servers.org. 5844 IN AAAA 2001:610:240:2::c100:ec
c.iana-servers.net. 12173 IN A 139.91.1.10
c.iana-servers.net. 12173 IN AAAA 2001:648:2c30::1:10
ns.icann.org. 12884 IN A 192.0.34.126

;; Query time: 156 msec
;; SERVER: 10.34.255.7#53(10.34.255.7)
;; WHEN: Wed Aug 18 18:25:15 2010
;; MSG SIZE rcvd: 310

 ⁠10.2.6. Advanced Features of BIND [Draft]

			Most BIND implementations only use the named service to provide name resolution services or to act as an authority for a particular domain. However, BIND version 9 has a number of advanced features that allow for a more secure and efficient DNS service.
		
Make sure the feature is supported [Draft]

				Before attempting to use advanced features like DNSSEC, TSIG, or IXFR (Incremental Zone Transfer), make sure that the particular feature is supported by all nameservers in the network environment, especially when you use older versions of BIND or non-BIND servers.
			

			All of the features mentioned are discussed in greater detail in the BIND 9 Administrator Reference Manual referenced in Section 10.2.8.1, “Installed Documentation” [Draft].
		

 ⁠10.2.6.1. Multiple Views [Draft]

				Optionally, different information can be presented to a client depending on the network a request originates from. This is primarily used to deny sensitive DNS entries from clients outside of the local network, while allowing queries from clients inside the local network.
			

				To configure multiple views, add the view statement to the /etc/named.conf configuration file. Use the match-clients option to match IP addresses or entire networks and give them special options and zone data.
			

 ⁠10.2.6.2. Incremental Zone Transfers (IXFR) [Draft]

				Incremental Zone Transfers (IXFR) allow a secondary nameserver to only download the updated portions of a zone modified on a primary nameserver. Compared to the standard transfer process, this makes the notification and update process much more efficient.
			

				Note that IXFR is only available when using dynamic updating to make changes to master zone records. If manually editing zone files to make changes, Automatic Zone Transfer (AXFR) is used.
			

 ⁠10.2.6.3. Transaction SIGnatures (TSIG) [Draft]

				Transaction SIGnatures (TSIG) ensure that a shared secret key exists on both primary and secondary nameservers before allowing a transfer. This strengthens the standard IP address-based method of transfer authorization, since attackers would not only need to have access to the IP address to transfer the zone, but they would also need to know the secret key.
			

				Since version 9, BIND also supports TKEY, which is another shared secret key method of authorizing zone transfers.
			
Secure the transfer [Draft]

					When communicating over an insecure network, do not rely on IP address-based authentication only.
				

 ⁠10.2.6.4. DNS Security Extensions (DNSSEC) [Draft]

				Domain Name System Security Extensions (DNSSEC) provide origin authentication of DNS data, authenticated denial of existence, and data integrity. When a particular domain is marked as secure, the SERVFAIL response is returned for each resource record that fails the validation.
			

				Note that to debug a DNSSEC-signed domain or a DNSSEC-aware resolver, you can use the dig utility as described in Section 10.2.5, “Using the dig Utility” [Draft]. Useful options are +dnssec (requests DNSSEC-related resource records by setting the DNSSEC OK bit), +cd (tells recursive nameserver not to validate the response), and +bufsize=512 (changes the packet size to 512B to get through some firewalls).
			

 ⁠10.2.6.5. Internet Protocol version 6 (IPv6) [Draft]

				Internet Protocol version 6 (IPv6) is supported through the use of AAAA resource records, and the listen-on-v6 directive as described in Table 10.3, “Commonly Used Configuration Options” [Draft].
			

 ⁠10.2.7. Common Mistakes to Avoid [Draft]

			The following is a list of recommendations on how to avoid common mistakes users make when configuring a nameserver:
		
	Use semicolons and curly brackets correctly
	
						An omitted semicolon or unmatched curly bracket in the /etc/named.conf file can prevent the named service from starting.
					

	Use period (the . character) correctly
	
						In zone files, a period at the end of a domain name denotes a fully qualified domain name. If omitted, the named service will append the name of the zone or the value of $ORIGIN to complete it.
					

	Increment the serial number when editing a zone file
	
						If the serial number is not incremented, the primary nameserver will have the correct, new information, but the secondary nameservers will never be notified of the change, and will not attempt to refresh their data of that zone.
					

	Configure the firewall
	
						If a firewall is blocking connections from the named service to other nameservers, the recommended practice is to change the firewall settings.
					
Avoid using fixed UDP source ports [Draft]

							Using a fixed UDP source port for DNS queries is a potential security vulnerability that could allow an attacker to conduct cache-poisoning attacks more easily. To prevent this, by default DNS sends from a random ephemeral port. Configure your firewall to allow outgoing queries from a random UDP source port. The range 1024 to 65535 is used by default.
						

 ⁠10.2.8. Additional Resources [Draft]

			The following sources of information provide additional resources regarding BIND.
		

 ⁠10.2.8.1. Installed Documentation [Draft]

				BIND features a full range of installed documentation covering many different topics, each placed in its own subject directory. For each item below, replace version with the version of the bind package installed on the system:
			
	 /usr/share/doc/bind-version/
	
							The main directory containing the most recent documentation. The directory contains the BIND 9 Administrator Reference Manual in HTML and PDF formats, which details BIND resource requirements, how to configure different types of nameservers, how to perform load balancing, and other advanced topics.
						

	 /usr/share/doc/bind-version/sample/etc/
	
							The directory containing examples of named configuration files.
						

	 rndc(8)
	
							The manual page for the rndc name server control utility, containing documentation on its usage.
						

	 named(8)
	
							The manual page for the Internet domain name server named, containing documentation on assorted arguments that can be used to control the BIND nameserver daemon.
						

	 lwresd(8)
	
							The manual page for the lightweight resolver daemon lwresd, containing documentation on the daemon and its usage.
						

	 named.conf(5)
	
							The manual page with a comprehensive list of options available within the named configuration file.
						

	 rndc.conf(5)
	
							The manual page with a comprehensive list of options available within the rndc configuration file.
						

 ⁠10.2.8.2. Useful Websites [Draft]

	 http://www.isc.org/software/bind
	
							The home page of the BIND project containing information about current releases as well as a PDF version of the BIND 9 Administrator Reference Manual.
						

 ⁠10.2.8.3. Related Books [Draft]

	DNS and BIND by Paul Albitz and Cricket Liu; O'Reilly & Associates
	
							A popular reference that explains both common and esoteric BIND configuration options, and provides strategies for securing a DNS server.
						

	The Concise Guide to DNS and BIND by Nicolai Langfeldt; Que
	
							Looks at the connection between multiple network services and BIND, with an emphasis on task-oriented, technical topics.
						

 ⁠Appendix A. Revision History [Draft]

			Revision History
	Revision 1-1	Fri Aug 1 2014	Stephen Wadeley
	
						 First version of the Fedora Networking Guide.

				

	

 ⁠Index [Draft]

Symbols
	/etc/named.conf (see BIND)
	 /etc/sysconfig/dhcpd , [Draft]Starting and Stopping the Server

A
	authoritative nameserver (see BIND)

B
	Berkeley Internet Name Domain (see BIND)
	BIND
		additional resources
		installed documentation, [Draft]Installed Documentation
	related books, [Draft]Related Books
	useful websites, [Draft]Useful Websites

	common mistakes, [Draft]Common Mistakes to Avoid
	configuration
		acl statement, [Draft]Common Statement Types
	comment tags, [Draft]Comment Tags
	controls statement, [Draft]Other Statement Types
	include statement, [Draft]Common Statement Types
	key statement, [Draft]Other Statement Types
	logging statement, [Draft]Other Statement Types
	options statement, [Draft]Common Statement Types
	server statement, [Draft]Other Statement Types
	trusted-keys statement, [Draft]Other Statement Types
	view statement, [Draft]Other Statement Types
	zone statement, [Draft]Common Statement Types

	directories
		/etc/named/, [Draft]Configuring the named Service
	/var/named/, [Draft]Editing Zone Files
	/var/named/data/, [Draft]Editing Zone Files
	/var/named/dynamic/, [Draft]Editing Zone Files
	/var/named/slaves/, [Draft]Editing Zone Files

	features
		Automatic Zone Transfer (AXFR), [Draft]Incremental Zone Transfers (IXFR)
	DNS Security Extensions (DNSSEC), [Draft]DNS Security Extensions (DNSSEC)
	Incremental Zone Transfer (IXFR), [Draft]Incremental Zone Transfers (IXFR)
	Internet Protocol version 6 (IPv6), [Draft]Internet Protocol version 6 (IPv6)
	multiple views, [Draft]Multiple Views
	Transaction SIGnature (TSIG), [Draft]Transaction SIGnatures (TSIG)

	files
		/etc/named.conf, [Draft]Configuring the named Service, [Draft]Configuring the Utility
	/etc/rndc.conf, [Draft]Configuring the Utility
	/etc/rndc.key, [Draft]Configuring the Utility

	resource record, [Draft]Nameserver Zones
	types
		authoritative nameserver, [Draft]Nameserver Types
	primary (master) nameserver, [Draft]Nameserver Zones, [Draft]Nameserver Types
	recursive nameserver, [Draft]Nameserver Types
	secondary (slave) nameserver, [Draft]Nameserver Zones, [Draft]Nameserver Types

	utilities
		dig, [Draft]BIND as a Nameserver, [Draft]Using the dig Utility, [Draft]DNS Security Extensions (DNSSEC)
	named, [Draft]BIND as a Nameserver, [Draft]Configuring the named Service
	rndc, [Draft]BIND as a Nameserver, [Draft]Using the rndc Utility

	zones
		$INCLUDE directive, [Draft]Common Directives
	$ORIGIN directive, [Draft]Common Directives
	$TTL directive, [Draft]Common Directives
	A (Address) resource record, [Draft]Common Resource Records
	CNAME (Canonical Name) resource record, [Draft]Common Resource Records
	comment tags, [Draft]Comment Tags
	description, [Draft]Nameserver Zones
	example usage, [Draft]A Simple Zone File, [Draft]A Reverse Name Resolution Zone File
	MX (Mail Exchange) resource record, [Draft]Common Resource Records
	NS (Nameserver) resource record, [Draft]Common Resource Records
	PTR (Pointer) resource record, [Draft]Common Resource Records
	SOA (Start of Authority) resource record, [Draft]Common Resource Records

	bonding (see channel bonding)

C
	channel bonding
		configuration, [Draft]Using Channel Bonding
	description, [Draft]Using Channel Bonding
	parameters to bonded interfaces, [Draft]Bonding Module Directives

	channel bonding interface (see kernel module)

D
	default gateway, [Draft]Static Routes and the Default Gateway
	DHCP, [Draft]DHCP Servers
		additional resources, [Draft]Additional Resources
	command-line options, [Draft]Starting and Stopping the Server
	dhcpd.conf, [Draft]Configuration File
	dhcpd.leases, [Draft]Starting and Stopping the Server
	dhcpd6.conf, [Draft]DHCP for IPv6 (DHCPv6)
	DHCPv6, [Draft]DHCP for IPv6 (DHCPv6)
	dhcrelay, [Draft]DHCP Relay Agent
	global parameters, [Draft]Configuration File
	group, [Draft]Configuration File
	options, [Draft]Configuration File
	reasons for using, [Draft]Why Use DHCP?
	Relay Agent, [Draft]DHCP Relay Agent
	server configuration, [Draft]Configuring a DHCP Server
	shared-network, [Draft]Configuration File
	starting the server, [Draft]Starting and Stopping the Server
	stopping the server, [Draft]Starting and Stopping the Server
	subnet, [Draft]Configuration File

	dhcpd.conf, [Draft]Configuration File
	dhcpd.leases, [Draft]Starting and Stopping the Server
	dhcrelay, [Draft]DHCP Relay Agent
	dig (see BIND)
	DNS
		definition, [Draft]DNS Servers
		(see also BIND)

	Dynamic Host Configuration Protocol (see DHCP)

F
	feedback
		contact information for this manual, [Draft]Feedback

K
	kernel module
		bonding module, [Draft]Using Channel Bonding
		description, [Draft]Using Channel Bonding
	parameters to bonded interfaces, [Draft]Bonding Module Directives

	module parameters
		bonding module parameters, [Draft]Bonding Module Directives

M
	Multihomed DHCP
		host configuration, [Draft]Host Configuration
	server configuration, [Draft]Configuring a Multihomed DHCP Server

N
	named (see BIND)
	nameserver (see DNS)
	NIC
		binding into single channel, [Draft]Using Channel Bonding

P
	primary nameserver (see BIND)

R
	recursive nameserver (see BIND)
	resource record (see BIND)
	rndc (see BIND)
	root nameserver (see BIND)

S
	secondary nameserver (see BIND)
	static route, [Draft]Static Routes and the Default Gateway

OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/images/dot2.png

OEBPS/Common_Content/images/documentation.png
made with
Publican

OEBPS/Common_Content/images/h1-bg.png

OEBPS/Common_Content/images/26.png

OEBPS/content.opf
 20_idm84102864 Networking Guide The Networking Guide documents relevant information regarding the configuration and administration of network interfaces, networks and network services in Fedora 20. It is oriented towards system administrators with a basic understanding of Linux and networking. This book is based on the Deployment Guide from Red Hat Enterprise Linux 6. The chapters related to networking were taken from the Deployment Guide to form the foundation for this book. Stephen Wadeley en

OEBPS/Common_Content/images/shine.png

OEBPS/Common_Content/images/shade.png

OEBPS/images/Editing-Bridge-Connection-1_Gnome3.png
Bri

Connection name: connection 1]

General | Bridge | IPv4 Settings | IPV6 Settings

Interface name: bridge0

Bridged connections;

Add
Edit
Delete

Ageing time: 300 - +s

@ Enable STP (Spanning Tree Protocol)

Priority: 128 =

Forward delay: 15 - +s

Hello time: 2 - +s

Max age: 20 - +s

Cancel Save

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/Common_Content/images/image_right.png
DOCUMENTATION

OEBPS/Common_Content/images/red.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/images/28.png

OEBPS/Common_Content/images/3.png

OEBPS/Common_Content/images/34.png

OEBPS/Common_Content/images/image_left.png
fedora>"

OEBPS/Common_Content/images/16.png

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/images/5.png

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/images/bullet_arrowblue.png

OEBPS/Common_Content/images/24.png

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/title_logo.png
fedorqa

OEBPS/Common_Content/images/37.png

OEBPS/Common_Content/images/7.png

OEBPS/Common_Content/images/warning.png

OEBPS/Common_Content/images/logo.png
fedora>"

OEBPS/images/Network-Details-Wired_Gnome3.png
Security
Identity
1Pva.
1Pv6

Reset

Wired

1PvA Address 192.168.100.149
1Pv6 Address fe80::5054:f-fe99zefdc
Hardware Address 52:54:00:9

:4C
Default Route 192.168.100.1
DNS 192.168.100.1

Cancel.

Apply

OEBPS/Common_Content/images/important.png

OEBPS/Common_Content/images/9.png

OEBPS/Common_Content/images/35.png

OEBPS/images/Network-Wired_Gnome3.png
Wired
ON
e L

1Pva Address 192.168.100.149

@ Network proxy

IPV6 Address fe80::

054:ff:fe99:efdc
Hardware Address 52:54:00:99:EF:4C
Default Route 192.168.100.1

DNS 192.168.100.1

Add Profile.. £

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/images/19.png

OEBPS/Common_Content/images/17.png

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/Common_Content/images/20.png

OEBPS/Common_Content/images/33.png

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/images/4.png

OEBPS/Common_Content/images/21.png

OEBPS/Common_Content/images/31.png

OEBPS/Common_Content/images/23.png

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/14.png

OEBPS/Common_Content/images/1.png

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/images/25.png

OEBPS/Common_Content/images/38.png

OEBPS/Common_Content/images/bkgrnd_greydots.png

OEBPS/Common_Content/images/8.png

